Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biol Rep ; 47(6): 4209-4214, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32468257

RESUMO

Micro-RNAs are a novel class of single-strand non-coding RNAs, which play an important role in tumorigenesis. This investigation aimed to evaluate associations between the hsa-miR-27a (rs895819 T > C) and hsa-miR-125a (rs12976445 C > T) gene variations and the risk of PCa. In the present case-control investigation, we have obtained 300 peripheral blood samples, consisting of 150 subjects with PCa and 150 healthy men. The genotype frequencies of hsa-miR-27a and hsa-miR-125a gene variations evaluated using the PCR-RFLP technique. Based on our findings, the genotype frequencies did not reveal a significant association between the rs895819T and rs12976445C variations and the risk of PCa in the three heredity models (P > 0.05). Minor alleles C and T of rs895819 and rs12976445 did not show an increased risk of PCa progression (P > 0.05). Our findings indicated that the hsa-miR-27a and hsa-miR-125a gene variations are not increased PCa predisposition in the Iranian population.


Assuntos
MicroRNAs/genética , Neoplasias da Próstata/genética , Adulto , Alelos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Humanos , Irã (Geográfico)/epidemiologia , Masculino , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
2.
J Endocrinol Invest ; 39(10): 1187-93, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27300034

RESUMO

PURPOSE: The study was aimed at investigating the association between hsa-mir-27a polymorphism rs895819 (T/C) and type 2 diabetes mellitus (T2DM) susceptibility in a large Iranian cohort. METHODS: In this case-control study, the investigated population consisted of T2DM patients (n = 204) and sex- and age-matched controls (n = 209). We used the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) for genotyping. RESULTS: We observed significant differences between T2DM patients and controls for weight (p = 0.002), BMI (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), fasting plasma glucose (p < 0.001), triglyceride (p = 0.004) and LDL cholesterol (p = 0.051). Moreover, we found that genotype distributions were significantly different between groups (p < 0.05) and that the rs895819-C allele is more frequent in controls (p = 0.030, OR = 0.72, 95 % CI 0.53-0.97). CONCLUSION: Our study shows that rs895819 in hsa-mir-27a is associated with T2DM susceptibility and that the C allele conveyed a protective role against T2DM. Larger multicentric and specific functional studies will be necessary to obtain a deeper comprehension of the role of rs895819 and hsa-mir-27a and how they are involved in the development of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Predisposição Genética para Doença , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Pareamento de Bases , Sequência de Bases , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Biologia Computacional , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Fatores de Risco
3.
Hum Gene Ther ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767504

RESUMO

Early diagnosis and intervention are pivotal in reducing colorectal cancer (CRC) incidence and enhancing patient outcomes. In this study, we focused on three genes, AQP8, GUCA2B, and SPIB, which exhibit high coexpression and play crucial roles in suppressing early-stage CRC. Our objective was to identify key miRNAs that can mitigate CRC tumorigenesis and modulate the coexpression network involving these genes. We conducted a comprehensive analysis using large-scale tissue mRNA data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus to validate the coexpression of AQP8, GUCA2B, and SPIB, and to assess their diagnostic and prognostic significance in CRC. The mRNA-miRNA interactions were examined using MiRNet and the Encyclopedia of RNA Interactomes. Furthermore, using various molecular techniques, we conducted miRNA inhibitor transfection experiments in HCT116 cells to evaluate their effects on cell growth, migration, and gene/protein expression. Our findings revealed that, compared with normal tissues, AQP8, GUCA2B, and SPIB exhibited high coexpression and were downregulated in CRC, particularly during tumorigenesis. OncoMirs, hsa-miR-182-5p, and hsa-miR-27a-3p, were predicted to regulate these genes. MiRNA inhibition experiments in HCT116 cells demonstrated the inhibitory effects of miR-27a-3p and miR-182-5p on GUCA2B mRNA and protein expression. These miRNAs promoted the proliferation of CRC cells, possibly through their involvement in the GUCA2B-GUCY2C axis, which is known to promote tumor growth. While the expressions of AQP8 and SPIB were barely detectable, their regulatory relationship with hsa-miR-182-5p remained inconclusive. Our study confirms that hsa-miR-27a-3p and hsa-miR-182-5p are oncomiRs in CRC. These miRNAs may contribute to GUCY2C dysregulation by downregulating GUCA2B, which encodes uroguanylin. Consequently, hsa-miR-182-5p and hsa-miR-27a-3p show promise as potential targets for early intervention and treatment in the early stages of CRC.

4.
Gene ; 913: 148387, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38499211

RESUMO

BACKGROUND: Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are highly involved in the regulation of hepatocyte viability, proliferation, and plasticity. We have previously demonstrated that repression of H3K27 methylation in differentiated hepatic HepaRG cells by treatment with GSK-J4, an inhibitor of JMJD3 and UTX H3K27 demethylase activity, changed their phenotype, inducing differentiated hepatocytes to proliferate. In addition to the epigenetic enzymatic role in the regulation of the retro-differentiation process, emerging evidence indicate that microRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. Hence, the aim of this work is to investigate the impact of H3K27 methylation on miRNAs expression profile and its role in the regulation of the differentiation status of human hepatic progenitors HepaRG cells. METHODS: A miRNA-sequencing was carried out in differentiated HepaRG cells treated or not with GSK-J4. Target searching and Gene Ontology analysis were performed to identify the molecular processes modulated by differentially expressed miRNAs. The biological functions of selected miRNAs was further investigated by transfection of miRNAs inhibitors or mimics in differentiated HepaRG cells followed by qPCR analysis, albumin ELISA assay, CD49a FACS analysis and EdU staining. RESULTS: We identified 12 miRNAs modulated by GSK-J4; among these, miR-27a-3p and miR- 423-5p influenced the expression of several proliferation genes in differentiated HepaRG cells. MiR-27a-3p overexpression increased the number of hepatic cells reentering proliferation. Interestingly, both miR-27a-3p and miR-423-5p did not affect the expression levels of genes involved in the differentiation of progenitors HepaRG cells. CONCLUSIONS: Modulation of H3K27me3 methylation in differentiated HepaRG cells, by GSK-J4 treatment, influenced miRNA' s expression profile pushing liver cells towards a proliferating phenotype. We demonstrated the involvement of miR-27a-3p in reinducing proliferation of differentiated hepatocytes suggesting a potential role in liver plasticity.


Assuntos
Hepatócitos , MicroRNAs , Humanos , Hepatócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Diferenciação Celular/genética , Epigênese Genética
5.
Curr Mol Pharmacol ; 16(6): 609-628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35538794

RESUMO

BACKGROUND: Changes in activation/inhibition of Sirtuin-1 (SIRT1) and aromatase play an important role in a plethora of diseases. MicroRNAs (miRNAs) modulate multiple molecular pathways and affect a substantial number of physiological and pathological processes. OBJECTIVE: The aim of this study was to investigate any possible interaction between aromatase and SIRT1 in SH-SY5Y cells and to see how there is a connection between this interaction and miRNA expression, if there is an interaction. METHODS: In this study, cells were incubated in serum-deprived media for 6, 12, and 24 h. Aromatase and SIRT1 expressions were evaluated by Western blot. The IC50 concentration of SIRT1 activator (SRT1720), SIRT1 inhibitor (EX527), and aromatase inhibitors (letrozole and fadrozole) was determined by the XTT method. Then, CYP19A1 and SIRT1 levels were evaluated in the presence of SIRT1 siRNA or IC50 values for each activator/inhibitor. Finally, CYP19A1, SIRT1 expression and miRNA target gene were assessed with bioinformatic approaches. RESULTS: Aromatase and SIRT1 protein levels were significantly elevated in the cells incubated at 24 h in serum-deprived media (p ≤ 0.05). SIRT1 also positively regulated CYP19A1 in SH-SY5Y cells in media with/without FBS. Serum deprivation depending on time course caused changes in the oxidant/ antioxidant system. While oxidative stress index tended to decrease in the absence of FBS at 24 h compared to the control, it showed a significant decrease at 48 h in a serum-deprived manner (p ≤ 0.001). As a result of bioinformatics analysis, we determined 3 miRNAs that could potentially regulate SIRT1 and CYP19A1. hsa-miR-27a-3p and hsa-miR-181a-5p correlated in terms of their expressions at 24 h compared to 12 h, and there was a significant decrease in the expression of these miRNAs. On the contrary, the expression of hsa-miR-30c-5p significantly increased at 24 h compared to 12 h. CONCLUSION: Considering the results, a direct link between aromatase and SIRT1 was observed in human neuroblastoma cells. The identification of key miRNAs, hsa-miR-27a-3p, hsa-miR-30c-5p, and hsa-miR-181a-5p targeting both aromatase and SIRT1, provides an approach with novel insights on neurology-associated diseases.


Assuntos
MicroRNAs , Neuroblastoma , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/genética , Aromatase/genética , Neuroblastoma/genética
6.
Front Genet ; 13: 829384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281840

RESUMO

Background: Considering the role of immunity and ferroptosis in the invasion, proliferation and treatment of cancer, it is of interest to construct a model of prognostic-related differential expressed immune-related ferroptosis genes (PR-DE-IRFeGs), and explore the ferroptosis-related biological processes in esophageal cancer (ESCA). Methods: Four ESCA datasets were used to identify three PR-DE-IRFeGs for constructing the prognostic model. Validation of our model was based on analyses of internal and external data sets, and comparisons with past models. With the biological-based enrichment analysis as a guide, exploration for ESCA-related biological processes was undertaken with respect to the immune microenvironment, mutations, competing endogenous RNAs (ceRNA), and copy number variation (CNV). The model's clinical applicability was measured by nomogram and correlation analysis between risk score and gene expression, and also immune-based and chemotherapeutic sensitivity. Results: Three PR-DE-IRFeGs (DDIT3, SLC2A3, and GCH1), risk factors for prognosis of ESCA patients, were the basis for constructing the prognostic model. Validation of our model shows a meaningful capability for prognosis prediction. Furthermore, many biological functions and pathways related to immunity and ferroptosis were enriched in the high-risk group, and the role of the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 network in ESCA is supported. Also, the KMT2D mutation is associated with our risk score and SLC2A3 expression. Overall, the prognostic model was associated with treatment sensitivity and levels of gene expression. Conclusion: A novel, prognostic model was shown to have high predictive value. Biological processes related to immune functions, KMT2D mutation, CNV and the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 network were involved in ESCA progression.

7.
Int J Reprod Biomed ; 18(11): 961-968, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33349804

RESUMO

BACKGROUND: The role of KDM3A and its downstream genes in male fertility has been approved in animal models. Additionally, the expression shrinkage of KDM3A is significantly correlated with human azoospermia phenotype. Aberrant expression of micro-RNAs could mislead spermatogenesis and mostly lead to diverse phenotypes of male infertility. OBJECTIVE: The aim of this study was to evaluate the expression level of hsa-miR-27a-3p in azoospermic men to reveal its possible association with infertility. MATERIALS AND METHODS: This case-control study was conducted on 30 azoospermic men, of whom, 19 had non obstructive azoospermia (NOA) and 11 obstructive azoospermia (OA) according to the pathological examinations. Comprehensive bioinformatics investigations were performed securely and hsa-miR-27a-3p was selected afterward. Reverse Transcriptase-quantitative polymerase chain reaction (RT-qPCR) method was used and statistical analysis was performed to compare the expression level of hsa-miR-27a-3p in both OA and NOA individuals. RESULTS: In silico analysis suggested hsa-miR-27a-3p, with its potential binding ability to target KDM3A transcripts. The expression analysis of candidate hsa-miR-27a-3p indicated its significant overexpression in NOA men. CONCLUSION: The hsa-miR-27a-3p was overexpressed in NOA men compared to OA-control individuals. As a consequence, the overexpressed micro-RNA could downregulate directly KDM3A and indirectly TNP1 and PRM1. Therefore, spermatogenesis could be misled and male infertility could be developed.

8.
Per Med ; 16(2): 107-114, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30767608

RESUMO

AIM: MicroRNAs (miRNAs) are small regulatory RNA molecules that control gene activity by base pairing with target messenger RNA leading to their cleavage or translational repression. Previous studies show an involvement of miRNAs in various diseases including cancer. Members of the Mir-23a cluster (MIR23A, MIR24-2 and MIR27A) are involved in breast cancer (BC). METHODS: In the present study, miR-23a/24-2/27a cluster was screened for genetic mutation in BC patients. RESULTS: Heterozygous (A/G allele) as well as homozygous (G/G allele) variants were found in mir-27a gene in screened BC patients. RNA structural analysis revealed that the single nucleotide polymorphism (SNP) effects the size of the terminal loop in the precursor miRNA (pre-miRNA). CONCLUSION: The altered (G allele) hairpin structure observed was two bases longer than the reference (A allele) hairpin.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Perfil Genético , Humanos , Pessoa de Meia-Idade , Paquistão , Polimorfismo de Nucleotídeo Único/genética , Dobramento de RNA/genética , Resultado do Tratamento
9.
Life Sci ; 210: 263-270, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30138596

RESUMO

AIMS: Survival of ovarian cancer patients is generally poor, partly because most of them are already at an advanced stage when diagnosed. The purpose of this study was to screen prognostic miRNAs for ovarian cancer, and to explore the underlying mechanisms. MAIN METHODS: Integrated meta-analysis of miRNA microarrays retrieved from public repositories was employed to identify clinically significant miRNAs involved in ovarian cancer. Targets of candidate miRNA were predicted using four online databases, and validated with dual luciferase assay. Loss and gain of function were performed to investigate the role of miR27a in the growth of ovarian cancer cell lines. KEY FINDINGS: Based on cross-validation results in multiple datasets, we recognized hsa-miR-27a as an oncogenic molecular and a prognostic factor for ovarian cancer patients. Dual luciferase assay indicated tumor suppressor FOXO1 was a direct target of miR-27a. In addition, hsa-miR-27a could stimulate SKOV3 and A2780 cell proliferation and migration by regulating the expression of FOXO1. SIGNIFICANCE: In summary, our results indicate that miR-27a can promote progression of ovarian cancer by mediating FOXO1. To our knowledge, this is the first study focusing on the role of miR-27a/FOXO1 axis using the microarray meta-analysis in ovarian cancer. Furthermore, inhibiting miR-27a expression may be a new strategy for the treatment of ovarian cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Oncogenes , Neoplasias Ovarianas/genética , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Proteína Forkhead Box O1/genética , Humanos , Análise em Microsséries , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
10.
J Thromb Haemost ; 14(6): 1226-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26999003

RESUMO

UNLABELLED: Essentials Estrogens are known to influence the expression of microRNAs in breast cancer cells. We looked at microRNAs in estrogenic regulation of tissue factor pathway inhibitor α (TFPIα). Estrogen upregulated microRNA-27a/b and microRNA-494 through the estrogen receptor α. MicroRNA-27a/b and microRNA-494 are partly involved in estrogenic downregulation of TFPIα. SUMMARY: Background Tissue factor pathway inhibitor (TFPI) has been linked to breast cancer pathogenesis. We have recently reported TFPI mRNA levels to be downregulated by estrogens in a breast cancer cell line (MCF7) through the estrogen receptor α (ERα). Accumulating evidence also indicates that activation of ERα signaling by estrogens may modulate the expression of target genes indirectly through microRNAs (miRNAs). Objectives To examine if miRNAs are involved in the estrogenic downregulation of TFPIα. Methods Computational analysis of the TFPI 3'-untranslated region (UTR) identified potential binding sites for miR-19a/b, miR-27a/b, miR-494, and miR-24. Transient overexpression or inhibition of the respective miRNAs was achieved by transfection of miRNA mimics or inhibitors. Direct targeting of TFPI 3'-UTR by miR-27a/b and miR-494 was determined by luciferase reporter assay in HEK293T cells. Effects of 17α-ethinylestradiol (EE2) and fulvestrant on relative miR-27a/b, miR-494, and TFPI mRNA levels in MCF7 cells were determined by qRT-PCR and secreted TFPIα protein by ELISA. Transient knockdown of ERα was achieved by siRNA transfection. Results EE2 treatment lead to a significant increase in miR-19a, miR-27a/b, miR-494, and miR-24 mRNA levels in MCF7 cells through ERα. miR-27a/b and miR-494 mimics lead to reduced TFPI mRNA and protein levels. Luciferase assay showed direct targeting of miR-27a/b and miR-494 on TFPI mRNA. Impaired estrogen-mediated downregulation of TFPI mRNA was detected in anti-miR-27a/b and anti-miR-494 transfected cells. Conclusions Our results provide evidence that miR-27a/b and miR-494 regulate TFPIα expression and suggest a possible role of these miRNAs in the estrogen-mediated downregulation of TFPIα.


Assuntos
Regulação para Baixo , Estrogênios/química , Lipoproteínas/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Fator Xa/química , Células HEK293 , Humanos , Células MCF-7 , Ligação Proteica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA