Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Malar J ; 23(1): 86, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532415

RESUMO

BACKGROUND: The degree to which Anopheles mosquitoes prefer biting humans over other vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing malaria transmission risk. However, existing techniques for identifying mosquito blood meals are demanding in terms of time and effort, involve costly reagents, and are prone to inaccuracies due to factors such as cross-reactivity with other antigens or partially digested blood meals in the mosquito gut. This study demonstrates the first field application of mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-feeding histories of malaria vectors, with direct comparison to PCR assays. METHODS AND RESULTS: Female Anopheles funestus mosquitoes (N = 1854) were collected from rural Tanzania and desiccated then scanned with an attenuated total reflectance Fourier-transform Infrared (ATR-FTIR) spectrometer. Blood meals were confirmed by PCR, establishing the 'ground truth' for machine learning algorithms. Logistic regression and multi-layer perceptron classifiers were employed to identify blood meal sources, achieving accuracies of 88%-90%, respectively, as well as HBI estimates aligning well with the PCR-based standard HBI. CONCLUSIONS: This research provides evidence of MIRS-ML effectiveness in classifying blood meals in wild Anopheles funestus, as a potential complementary surveillance tool in settings where conventional molecular techniques are impractical. The cost-effectiveness, simplicity, and scalability of MIRS-ML, along with its generalizability, outweigh minor gaps in HBI estimation. Since this approach has already been demonstrated for measuring other entomological and parasitological indicators of malaria, the validation in this study broadens its range of use cases, positioning it as an integrated system for estimating pathogen transmission risk and evaluating the impact of interventions.


Assuntos
Anopheles , Malária , Animais , Humanos , Feminino , Mosquitos Vetores , Malária/epidemiologia , Aprendizado de Máquina , Espectrofotometria Infravermelho , Comportamento Alimentar
2.
Med Vet Entomol ; 37(4): 782-792, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37540228

RESUMO

Visceral leishmaniasis (VL, kala azar), caused by Leishmania donovani, transmitted by Phlebotomus orientalis, is a serious systemic disease that causes high morbidity and mortality rates in Sudan and other parts of East Africa and the world. Despite progress in understanding the epidemiology of the disease in East Africa, little is known about the host preference of P. orientalis in kala azar endemic villages of Sudan, which have some of the highest VL incidence rates in the world. The present study used host choice experiments and blood-meal identification approaches to determine the host preference of P. orientalis in kala azar endemic villages in Gedarif state, eastern Sudan. In the host choice experiment, tent traps were used to compare the attractiveness of cows, donkeys, sheep and goats for host-seeking P. orientalis. In the blood-meal identification study, blood-fed P. orientalis females, captured inside houses and peri-domestic habitats, were subjected to molecular typing using cytochrome b gene (cyt b) amplification and sequence analysis. Cows and donkeys were the most attractive to blood-seeking P. orientalis, followed by goats. Similarly, the blood-meal analysis of P. orientalis showed that the vector preferentially feeds on cows, followed by donkeys, humans and goats. The human blood index of P. orientalis was 19.4% (42/216), indicating a high zoophilic habit of the vector, both inside and outside the houses. Although the order of host preference varied by location, it was clear that cows are the most preferred host of P. orientalis in the area. Results are discussed in relation to the role of domestic/livestock animals in VL zoopotentiation and zooprophylaxis. Inference is made on the potential impact of insecticide treatment of cows in control of the vector and the transmission of VL in Sudan and other parts of East Africa.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Leishmaniose Visceral , Phlebotomus , Psychodidae , Doenças dos Ovinos , Feminino , Humanos , Animais , Bovinos , Ovinos , Leishmaniose Visceral/veterinária , Sudão/epidemiologia , Equidae , Cabras
3.
Malar J ; 15: 152, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964528

RESUMO

BACKGROUND: The proportion of blood meals that mosquitoes take from a host species is a function of the interplay of extrinsic (abundance and location of potential hosts) and intrinsic (innate preference) factors. A mark-release-recapture experiment addressed whether host preference in a population of Anopheles farauti was uniform or if there were anthropophilic and zoophilic subpopulations. The corresponding fitness associated with selecting different hosts for blood meals was compared by measuring fecundity. METHODS: The attractiveness of humans for blood meals by An. farauti in the Solomon Islands was compared to pigs using tent traps. Host fidelity was assessed by mark-release-recapture experiments in which different colour dusts were linked to the host to which the mosquito was first attracted. Outdoor resting An. farauti were captured on barrier screens and the human blood index (HBI) as well as the feeding index were calculated. The fecundity of individual An. farauti after feeding on either humans or pigs was assessed from blood-fed mosquitoes held in individual oviposition chambers. RESULTS: Anopheles farauti were more attracted to humans than pigs at a ratio of 1.31:1.00. The mark-release-recapture experiment found evidence for An. farauti being a single population regarding host preference. The HBI of outdoor resting An. farauti was 0.93 and the feeding index was 1.29. Anopheles farauti that fed on a human host laid more eggs but had a longer oviposition time compared to An. farauti that had blood fed on a pig. CONCLUSIONS: One of the strongest drivers for host species preference was the relative abundance of the different host species. Here, An. farauti have a slight preference for humans over pigs as blood meal sources. However, the limited availability of alternative hosts relative to humans in the Solomon Islands ensures a very high proportion of blood meals are obtained from humans, and thus, the transmission potential of malaria by An. farauti is high.


Assuntos
Anopheles/fisiologia , Especificidade de Hospedeiro , Animais , Anopheles/crescimento & desenvolvimento , Bioensaio , Comportamento Alimentar , Feminino , Fertilidade , Humanos , Melanesia , Suínos
4.
Parasit Vectors ; 17(1): 162, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553759

RESUMO

BACKGROUND: In the Greater Mekong Subregion (GMS), new vector-control tools are needed to target mosquitoes that bite outside during the daytime and night-time to advance malaria elimination. METHODS: We conducted systematic literature searches to generate a bionomic dataset of the main malaria vectors in the GMS, including human blood index (HBI), parity proportion, sac proportion (proportion with uncontracted ovary sacs, indicating the amount of time until they returned to host seeking after oviposition) and the resting period duration. We then performed global sensitivity analyses to assess the influence of bionomics and intervention characteristics on vectorial capacity. RESULTS: Our review showed that Anopheles minimus, An. sinensis, An. maculatus and An. sundaicus display opportunistic blood-feeding behaviour, while An. dirus is more anthropophilic. Multivariate regression analysis indicated that environmental, climatic and sampling factors influence the proportion of parous mosquitoes, and resting duration varies seasonally. Sensitivity analysis highlighted HBI and parity proportion as the most influential bionomic parameters, followed by resting duration. Killing before feeding is always a desirable characteristic across all settings in the GMS. Disarming is also a desirable characteristic in settings with a low HBI. Repelling is only an effective strategy in settings with a low HBI and low parity proportion. Killing after feeding is only a desirable characteristic if the HBI and parity proportions in the setting are high. CONCLUSIONS: Although in general adopting tools that kill before feeding would have the largest community-level effect on reducing outdoor transmission, other modes of action can be effective. Current tools in development which target outdoor biting mosquitoes should be implemented in different settings dependent on their characteristics.


Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Animais , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/fisiologia , Anopheles/fisiologia , Controle de Mosquitos/métodos , Humanos , Comportamento Alimentar , Sudeste Asiático , Modelos Teóricos
5.
Parasit Vectors ; 15(1): 61, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183249

RESUMO

BACKGROUND: Vector control is the main intervention used to control arboviral diseases transmitted by Aedes mosquitoes because there are no effective vaccines or treatments for most of them. Control of Aedes mosquitoes relies heavily on the use of insecticides, the effectiveness of which may be impacted by resistance. In addition, rational insecticide application requires detailed knowledge of vector distribution, dynamics, resting, and feeding behaviours, which are poorly understood for Aedes mosquitoes in Africa. This study investigated the spatiotemporal distribution and insecticide resistance status of Aedes aegypti across ecological extremes of Ghana. METHODS: Immature mosquitoes were sampled from containers in and around human dwellings at seven study sites in urban, suburban, and rural areas of Ghana. Adult Aedes mosquitoes were sampled indoors and outdoors using Biogents BG-Sentinel 2 mosquito traps, human landing catches, and Prokopack aspiration. Distributions of immature and adult Aedes mosquitoes were determined indoors and outdoors during dry and rainy seasons at all sites. The phenotypic resistance status of Aedes mosquitoes to insecticides was determined using World Health Organization susceptibility bioassays. The host blood meal source was determined by polymerase chain reaction. RESULTS: A total of 16,711 immature Aedes were sampled, with over 70% found in car tyres. Significantly more breeding containers had Aedes immatures during the rainy season (11,856; 70.95%) compared to the dry season (4855; 29.05%). A total of 1895 adult Aedes mosquitos were collected, including Aedes aegypti (97.8%), Aedes africanus (2.1%) and Aedes luteocephalus (0.1%). Indoor sampling of adult Aedes yielded a total of 381 (20.1%) and outdoor sampling a total of 1514 (79.9%) mosquitoes (z = - 5.427, P = 0.0000) over the entire sampling period. Aedes aegypti populations were resistant to dichlorodiphenyltrichloroethane at all study sites. Vectors showed suspected resistance to bendiocarb (96-97%), permethrin (90-96%) and deltamethrin (91-96%), and were susceptible to the organophosphate for all study sites. Blood meal analysis showed that the Aedes mosquitoes were mostly anthropophilic, with a human blood index of 0.9 (i.e. humans, 90%; human and dog, 5%; dog and cow, 5%). CONCLUSIONS: Aedes mosquitoes were found at high densities in all ecological zones of Ghana. Resistance of Aedes spp. to pyrethroids and carbamates may limit the efficacy of vector control programmes and thus requires careful monitoring.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Bovinos , Cães , Feminino , Gana , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia
6.
Parasit Vectors ; 15(1): 246, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804461

RESUMO

BACKGROUND: In sub-Saharan Africa there is widespread use of long-lasting insecticidal nets and indoor residual spraying to help control the densities of malaria vectors and decrease the incidence of malaria. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of the increasing insecticide resistance of malaria vectors in sub-Saharan Africa. METHODS: Indoor and outdoor resting anopheline mosquitoes were sampled during the dry and rainy seasons in five sites in three ecological zones [Sahel savannah (Kpalsogo, Pagaza, Libga); coastal savannah (Anyakpor); and forest (Konongo)]. Polymerase chain reaction-based molecular diagnostics were used to determine speciation, genotypes for knockdown resistance mutations (L1014S and L1014F) and the G119S ace1 mutation, specific host blood meal origins and sporozoite infection in the field-collected mosquitoes. RESULTS: Anopheles gambiae sensu lato (s.l.) predominated (89.95%, n = 1718), followed by Anopheles rufipes (8.48%, n = 162) and Anopheles funestus s.l. (1.57%, n = 30). Sibling species of the Anopheles gambiae s.l. revealed Anopheles coluzzii accounted for 63% (95% confidence interval = 57.10-68.91) and 27% (95% confidence interval = 21.66-32.55) was Anopheles gambiae s. s.. The mean resting density of An. gambiae s.l. was higher outdoors (79.63%; 1368/1718) than indoors (20.37%; 350/1718) (Wilcoxon rank sum test, Z = - 4.815, P < 0.0001). The kdr west L1014F and the ace1 mutation frequencies were higher in indoor resting An. coluzzii and An. gambiae in the Sahel savannah sites than in the forest and coastal savannah sites. Overall, the blood meal analyses revealed that a larger proportion of the malaria vectors preferred feeding on humans (70.2%) than on animals (29.8%) in all of the sites. Sporozoites were only detected in indoor resting An. coluzzii from the Sahel savannah (5.0%) and forest (2.5%) zones. CONCLUSIONS: This study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and the presence of malaria vectors indoors despite the use of long-lasting insecticidal nets and indoor residual spraying. Continuous monitoring of changes in the resting behavior of mosquitoes and the implementation of complementary malaria control interventions that target outdoor resting Anopheles mosquitoes are necessary in Ghana.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Gana , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Esporozoítos
7.
Acta Trop ; 213: 105751, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166514

RESUMO

Nyssorhynchus darlingi (Root) is the dominant malaria vector in the Brazilian Amazon River basin, with additional Anophelinae Grassi species involved in local and regional transmission. Mosquito blood-feeding behavior is an essential component to define the mosquito-human contact rate and shape the transmission cycle of vector-borne diseases. However, there is little information on the host preferences and blood-feeding behavior of Anophelinae vectors in rural Amazonian landscapes. The barrier screen sampling (BSS) method was employed to sample females from 34 peridomestic habitats in 27 rural communities from 11 municipalities in the Brazilian Amazon states of Acre, Amazonas, Pará and Rondônia, from August 2015 to November 2017. Nyssorhynchus darlingi comprised 97.94% of the females collected resting on barrier screens, and DNA sequence comparison detected 9 vertebrate hosts species. The HBI index ranged from 0.03-1.00. Results revealed the plasticity of Ny. darlingi in blood-feeding on a wide range of mainly mammalian hosts. In addition, the identification of blood meal sources using silica-dried females is appropriate for studies of human malaria vectors in remote locations.


Assuntos
Anopheles/parasitologia , Comportamento Alimentar/fisiologia , Comportamento de Busca por Hospedeiro/fisiologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Animais , Anopheles/fisiologia , Brasil , Ecossistema , Feminino , Humanos , Mordeduras e Picadas de Insetos/sangue , Rios
8.
Parasit Vectors ; 14(1): 166, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741078

RESUMO

BACKGROUND: Mosquito bloodmeal sources determine the feeding rates, adult survival, fecundity, hatching rates, and developmental times. Only the female Anopheles mosquito takes bloodmeals from humans, birds, mammals, and other vertebrates for egg development. Studies of the host preference patterns in blood-feeding anopheline mosquitoes are crucial to determine malaria vectors. However, the human blood index, foraging ratio, and host preference index of anopheline mosquitoes are not known so far in Bure district, Ethiopia. METHODS: The origins of bloodmeals from all freshly fed and a few half-gravid exophagic and endophagic females collected using Centers for Disease Control and Prevention light traps were identified as human and bovine using enzyme-linked immunosorbent assay. The human blood index, forage ratio, and host feeding index were calculated. RESULTS: A total of 617 specimens belonging to An. arabiensis (n = 209), An. funestus (n = 217), An. coustani (n = 123), An. squamosus (n = 54), and An. cinereus (n = 14) were only analyzed using blood ELISA. Five hundred seventy-five of the specimens were positive for blood antigens of the host bloods. All anopheline mosquitoes assayed for a bloodmeal source had mixed- rather than single-source bloodmeals. The FR for humans was slightly > 1.0 compared to bovines for all Anopheles species. HFI for each pair of vertebrate hosts revealed that humans were the slightly preferred bloodmeal source compared to bovines for all species (except An. squamosus), but there was no marked host selection. CONCLUSIONS: All anopheline mosquitoes assayed for bloodmeal ELISA had mixed feeds, which tends to diminish the density of gametocytes in the mosquito stomach, thereby reducing the chance of fertilization of the female gamete and reducing the chances of a malaria vector becoming infected. Moreover, An. coustani was the only species that had only human bloodmeals, meaning that this species has the potential to transmit the disease. Therefore, combination zooprophylaxis should be reinforced as a means of vector control because the study sites are mixed dwellings.


Assuntos
Anopheles/fisiologia , Sangue , Comportamento Alimentar , Refeições , Mosquitos Vetores/fisiologia , Animais , Anopheles/classificação , Anopheles/parasitologia , Bovinos , Etiópia , Feminino , Humanos , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/parasitologia
9.
Parasit Vectors ; 12(1): 257, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122286

RESUMO

BACKGROUND: Vector control interventions using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly practiced tools for the control of malaria in Ethiopia. In order to evaluate the effectiveness of these control interventions, and understand the prevailing malaria vectors, their incrimination in disease transmission, and their resting and feeding behavior, we set out to identify the Anopheles species, their blood meal sources, and entomological inoculation rate (EIR) in Ghibe and Darge within the Ghibe River basin, southwestern Ethiopia. METHODS: Adult Anopheles mosquitoes were sampled both indoors and outdoors from January 2015 to October 2016 using Centers for Disease Control and Prevention (CDC) light traps, pyrethrum spray catch (PSC), artificial pit shelters and mouth aspirators. Mosquito species were morphologically identified, and their blood meal sources and malaria sporozoite rates were assessed using enzyme-linked immunosorbent assays. RESULTS: In total, 13 species of Anopheles mosquitoes were identified, among which Anopheles gambiae (s.l.) was the predominant species: 87.9 and 67.7% in Ghibe and Darge, respectively. The mean density of An. gambiae (s.l.) collected per night using CDC light traps was 1.8 and 0.7 outdoors and indoors, respectively, in Ghibe, and 0.125 and 0.07 indoors and outdoors, respectively, in Darge. Anopheles mosquito abundance was higher in houses near the river than in houses far from the river in both study sites. Among Anopheles mosquitoes sampled using CDC light trap catches, 67.6% were unfed and the indoor and outdoor human blood indices of An. gambiae (s.l.) were 58.4 and 15.8%, respectively in Ghibe, while in Darge, they were 57.1 and 50%, respectively. Sporozoite rates were 0.07% for P. vivax and 0.07% for P. falciparum in Ghibe and zero in Darge. In Ghibe, the overall EIRs for P. falciparum and P. vivax were zero and 8.4 infective bites/person/year, respectively, in 2015, while zero and 5.4 infective bites/person/year for P. vivax and P. falciparum, respectively, in 2016. No Plasmodium-positive Anopheles mosquitoes were identified from Darge. CONCLUSIONS: Anopheles gambiae (s.l.), the principal vector of malaria in Ethiopia was the most abundant species both indoors and outdoors, fed both on human and cattle blood and occurred at higher frequencies near rivers. Anopheles gambiae (s.l.) that were circumsporozoite-positive for Plasmodium species were collected from Ghibe, but not Darge.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Comportamento Alimentar , Mosquitos Vetores/parasitologia , Animais , Anopheles/classificação , Sangue , Bovinos , Etiópia/epidemiologia , Feminino , Humanos , Malária/epidemiologia , Malária Falciparum/transmissão , Masculino , Mosquitos Vetores/fisiologia , Plasmodium falciparum , Rios , Esporozoítos
10.
Parasit Vectors ; 12(1): 374, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358033

RESUMO

BACKGROUND: Malaria remains an important public health problem in Peru where incidence has been increasing since 2011. Of over 55,000 cases reported in 2017, Plasmodium vivax was the predominant species (76%), with P. falciparum responsible for the remaining 24%. Nyssorhynchus darlingi (previously Anopheles darlingi) is the main vector in Amazonian Peru, where hyperendemic Plasmodium transmission pockets have been found. Mazán district has pronounced spatial heterogeneity of P. vivax malaria. However, little is known about behavior, ecology or seasonal dynamics of Ny. darlingi in Mazán. This study aimed to gather baseline information about bionomics of malaria vectors and transmission risk factors in a hyperendemic malaria area of Amazonian Peru. METHODS: To assess vector biology metrics, five surveys (two in the dry and three in the rainy season), including collection of sociodemographic information, were conducted in four communities in 2016-2017 on the Napo (Urco Miraño, URC; Salvador, SAL) and Mazán Rivers (Visto Bueno, VIB; Libertad, LIB). Human-biting rate (HBR), entomological inoculation rate (EIR) and human blood index (HBI) were measured to test the hypothesis of differences in entomological indices of Ny. darlingi between watersheds. A generalized linear mixed effect model (GLMM) was constructed to model the relationship between household risk factors and the EIR. RESULTS: Nyssorhynchus darlingi comprised 95% of 7117 Anophelinae collected and its abundance was significantly higher along the Mazán River. The highest EIRs (3.03-4.54) were detected in March and June in URC, LIB and VIB, and significantly more Ny. darlingi were infected outdoors than indoors. Multivariate analysis indicated that the EIR was >12 times higher in URC compared with SAL. The HBI ranged from 0.42-0.75; humans were the most common blood source, followed by Galliformes and cows. There were dramatic differences in peak biting time and malaria incidence with similar bednet coverage in the villages. CONCLUSIONS: Nyssorhynchus darlingi is the predominant contributor to malaria transmission in the Mazán District, Peru. Malaria risk in these villages is higher in the peridomestic area, with pronounced heterogeneities between and within villages on the Mazán and the Napo Rivers. Spatiotemporal identification and quantification of the prevailing malaria transmission would provide new evidence to orient specific control measures for vulnerable or at high risk populations.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Habitação , Malária/transmissão , Mosquitos Vetores/parasitologia , Rios , Adolescente , Adulto , Animais , Mordeduras e Picadas , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Masculino , Peru/epidemiologia , Fatores de Risco , Estações do Ano , Adulto Jovem
11.
J Med Entomol ; 53(3): 569-576, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018444

RESUMO

Comprehensive knowledge on vector dynamics is lacking in Botswana and yet essential for effective indoor residual spraying. This study assessed some of the entomological indices that contribute to malaria transmission by an indoor-resting population of Anopheles arabiensis Patton (Diptera: Culicidae) in Tubu village, Okavango subdistrict. The pyrethroid space-spray technique and hut searches were used to sample mosquitoes. Species and bloodmeal source identification were done using the polymerase chain reaction techniques. The infective status was determined by the enzyme-linked immuno-sorbent assay test. The human blood indices (HBI), human-biting rates (HBR), and vector densities were computed. Anopheles arabiensis was the sole vector and member of the Anopheles gambiae Giles complex identified. Significant changes in vector densities were observed over seasons, while nonsignificant differences were observed among the huts (P > 0.05). The main source of bloodmeal was cattle (46.8% [65]). There were no significant differences in HBI (P > 0.05) and HBR (P > 0.05) between the seasons. All the 271 mosquitoes tested for sporozoite infection were negative. The results showed that seasonal variations in vector densities corresponded to the traditional malaria and nonmalaria seasons. The vector population was relatively more zoophagic. The HBI and HBR were not influenced by the seasons. None of the endophilic mosquitoes tested (N = 271) was positive for sporozoites. Our study provided some relevant basic information to the local malaria control program that may be used to strategize their operations if malaria elimination has to be achieved by 2017.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Malária/transmissão , Animais , Anopheles/virologia , Botsuana/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/transmissão , Comportamento Alimentar , Feminino , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/parasitologia , Insetos Vetores/parasitologia , Malária/epidemiologia , Malária/parasitologia , Masculino , Controle de Mosquitos , Plasmodium/fisiologia , População Rural , Estações do Ano
12.
Parasit Vectors ; 9(1): 432, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27494934

RESUMO

BACKGROUND: Vector-biting behaviour is important for vector-borne disease (VBD) epidemiology. The proportion of blood meals taken on humans (the human blood index, HBI), is a component of the biting rate per vector on humans in VBD transmission models. Humans are the definitive host of Onchocerca volvulus, but the simuliid vectors feed on a range of animals and HBI is a key indicator of the potential for human onchocerciasis transmission. Ghana has a diversity of Simulium damnosum complex members, which are likely to vary in their HBIs, an important consideration for parameterization of onchocerciasis control and elimination models. METHODS: Host-seeking and ovipositing S. damnosum (sensu lato) (s.l.) were collected from seven villages in four Ghanaian regions. Taxa were morphologically and molecularly identified. Blood meals from individually stored blackfly abdomens were used for DNA profiling, to identify previous host choice. Household, domestic animal, wild mammal and bird surveys were performed to estimate the density and diversity of potential blood hosts of blackflies. RESULTS: A total of 11,107 abdomens of simuliid females (which would have obtained blood meal(s) previously) were tested, with blood meals successfully amplified in 3,772 (34 %). A single-host species was identified in 2,857 (75.7 %) of the blood meals, of which 2,162 (75.7 %) were human. Simulium soubrense Beffa form, S. squamosum C and S. sanctipauli Pra form were the most anthropophagic (HBI = 0.92, 0.86 and 0.70, respectively); S. squamosum E, S. yahense and S. damnosum (sensu stricto) (s.s.)/S. sirbanum were the most zoophagic (HBI = 0.44, 0.53 and 0.63, respectively). The degree of anthropophagy decreased (but not statistically significantly) with increasing ratio of non-human/human blood hosts. Vector to human ratios ranged from 139 to 1,198 blackflies/person. CONCLUSIONS: DNA profiling can successfully identify blood meals from host-seeking and ovipositing blackflies. Host choice varies according to sibling species, season and capture site/method. There was no evidence that HBI is vector and/or host density dependent. Transmission breakpoints will vary among locations due to differing cytospecies compositions and vector abundances.


Assuntos
Sangue/parasitologia , Insetos Vetores/classificação , Onchocerca volvulus/fisiologia , Oncocercose/transmissão , Simuliidae/isolamento & purificação , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Comportamento Alimentar , Feminino , Gana/epidemiologia , Humanos , Lactente , Insetos Vetores/genética , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Masculino , Pessoa de Meia-Idade , Oncocercose/epidemiologia , Oncocercose/parasitologia , Simuliidae/classificação , Simuliidae/genética , Simuliidae/parasitologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA