Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38513662

RESUMO

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Assuntos
Adenosina Trifosfatases , ATPases do Tipo-P , Animais , Camundongos , Humanos , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Transporte Biológico , ATPases do Tipo-P/metabolismo , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
2.
Heart Lung Circ ; 33(5): 747-752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365500

RESUMO

BACKGROUND: Increased cancer survivorship represents a remarkable achievement for modern medicine. Unfortunately, cancer treatments have inadvertently contributed to cardiovascular (CV) damage, significantly threatening the health and quality of life of patients living with, through and beyond cancer. Without understanding the mechanisms, including whether the cardiotoxicity is due to the direct or indirect effects on cardiomyocytes, prevention and management of cardiotoxicity can pose challenges in many patients. To date, the cardiotoxicity profiles of most of the chemotherapy drugs are still poorly understood. AIM: To conduct a pilot study to investigate the direct effects of a range of cancer therapies on cardiomyocyte viability. METHODS: Primary human cardiomyocytes (HCM) were cultured and seeded into 96-well culture plates. A total of 35 different Food and Drug Administration-approved anti-cancer drugs were added to the HCM cells with a concentration of 1uM for 72 hours. The viability of HCMs was determined using CellTitre-Glo. The experiments were repeated at least three times for each drug with HCMs of different passages. RESULTS: We identified 15 anti-cancer agents that significantly reduced HCM viability. These drugs were: (1) anthracyclines (daunorubicin [HCM viability, mean %±standard error, 13.7±3.2%], epirubicin [47.6±5.3%]), (2) antimetabolite (azacitidine [67.1±2.4%]), (3) taxanes (paclitaxel [60.2±3.0%]), (4) protein kinase inhibitors (lapatinib [49.8±7.0%], ponatinib [42.4±9.0%], pemigatinib [68.1±2.3%], sorafenib [52.9±10.6%], nilotinib [64.4±4.5%], dasatinib [38.5±3.6%]), (5) proteasome inhibitors (ixazomib citrate [65.4±7.2%]), (6) non-selective histone-deacetylase inhibitor (panobinostat [19.1±4.1%]), poly adenosine diphosphate-ribose polymerase inhibitor (olaparib [68.2±1.7%]) and (7) vinca alkaloids (vincristine [44.6±7.4%], vinblastine [31.2±3.9%]). CONCLUSIONS: In total, 15 of the 35 commercially available anti-cancer drugs have direct cardiotoxic effects on HCM. Some of those, have not been associated with clinical cardiotoxicity, while others, known to be cardiotoxic do not appear to mediate it via direct effects on cardiomyocytes. More detailed investigations of the effects of cancer therapies on various cardiovascular cells should be performed to comprehensively determine the mechanisms of cardiotoxicity.


Assuntos
Antineoplásicos , Cardiotoxicidade , Sobrevivência Celular , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Antineoplásicos/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cardiotoxicidade/etiologia , Neoplasias/tratamento farmacológico , Células Cultivadas , Projetos Piloto , Feminino
3.
J Transl Med ; 21(1): 662, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742032

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS: This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS: Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS: These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Miócitos Cardíacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia , Multiômica , Glucose/farmacologia
4.
Bull Exp Biol Med ; 175(4): 585-591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768452

RESUMO

To increase the yield of living cells and their survival, studies were carried out to optimize the method for isolating cardiomyocytes from biopsy specimens excised from the right atrial appendages. It was found that creatine, blebbistatin, and taurine are necessary components of the buffer solution during cardiomyocyte isolation, and that composition of the solutions is a more important factor than their oxygenation.


Assuntos
Miócitos Cardíacos , Taurina , Humanos , Miócitos Cardíacos/patologia , Separação Celular/métodos
5.
J Endocrinol Invest ; 45(1): 105-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34170488

RESUMO

PURPOSE: The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. METHODS: Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. RESULTS: In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. CONCLUSION: As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Miócitos Cardíacos , Rosiglitazona/farmacologia , Anti-Inflamatórios/farmacologia , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-8/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Prognóstico , Linfócitos T Auxiliares-Indutores/imunologia , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769334

RESUMO

Members of the fetal-gene-program may act as regulatory components to impede deleterious events occurring with cardiac remodeling, and constitute potential novel therapeutic heart failure (HF) targets. Mitochondrial energy derangements occur both during early fetal development and in patients with HF. Here we aim to elucidate the role of DIO2, a member of the fetal-gene-program, in pluripotent stem cell (PSC)-derived human cardiomyocytes and on mitochondrial dynamics and energetics, specifically. RNA sequencing and pathway enrichment analysis was performed on mouse cardiac tissue at different time points during development, adult age, and ischemia-induced HF. To determine the function of DIO2 in cardiomyocytes, a stable human hPSC-line with a DIO2 knockdown was made using a short harpin sequence. Firstly, we showed the selenoprotein, type II deiodinase (DIO2): the enzyme responsible for the tissue-specific conversion of inactive (T4) into active thyroid hormone (T3), to be a member of the fetal-gene-program. Secondly, silencing DIO2 resulted in an increased reactive oxygen species, impaired activation of the mitochondrial unfolded protein response, severely impaired mitochondrial respiration and reduced cellular viability. Microscopical 3D reconstruction of the mitochondrial network displayed substantial mitochondrial fragmentation. Summarizing, we identified DIO2 to be a member of the fetal-gene-program and as a key regulator of mitochondrial performance in human cardiomyocytes. Our results suggest a key position of human DIO2 as a regulator of mitochondrial function in human cardiomyocytes.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Iodeto Peroxidase/metabolismo , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/citologia , Resposta a Proteínas não Dobradas , Animais , Humanos , Iodeto Peroxidase/genética , Camundongos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/metabolismo , Iodotironina Desiodinase Tipo II
7.
J Cell Physiol ; 235(11): 8048-8057, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31960416

RESUMO

Ischemia/reperfusion (I/R) injury could cause the enhanced cell apoptosis of cardiomyocytes, which is one of key contributors for the development of ischemic heart disease. Recent studies emphasized the role of microRNAs (miRNAs) in regulating cardiomyocyte apoptosis. The study planned to elucidate the molecular actions of miR-885 on mediating human cardiomyocytes (HCMs) apoptosis induced by hypoxia/reoxygenation (H/R) and to explore the potential molecular mechanisms. The present data revealed that H/R stimulation inhibited HCM viability and potentiated HCM apoptosis, and more importantly, the expression of miR-885 in HCMs was markedly repressed after H/R stimulation. Further experimental examinations demonstrated that overexpression of miR-885 attenuated H/R-induced increased in HCM apoptotic rates, while miR-885 knockdown impaired HCM viability and increased HCM apoptotic rates. Moreover, the mechanistic studies showed that miR-885 inversely regulated the expression of phosphatase and tensin homolog (PTEN) and BCL2 like 11 (BCL2L11) in HCMs, and enforced expression of PTEN and BCL2L11 partially antagonized the protective actions of miR-885 overexpression on H/R-induced HCM injury. Moreover, H/R suppressed AKT/mTOR signaling, which was attenuated by miR-885 overexpression in HCMs. In conclusion, the present study for the first time showed the downregulation of miR-885 induced by H/R in HCMs, and provided the evidence that miR-885 attenuated H/R-induced cell apoptosis via inhibiting PTEN and BLC2L11 and modulation of AKT/mTOR signaling in HCMs.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , PTEN Fosfo-Hidrolase/genética , Apoptose/genética , Morte Celular/genética , Hipóxia Celular/genética , Sobrevivência Celular , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
8.
Pharmacol Res ; 160: 105176, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32871247

RESUMO

Hypertrophic cardiomyopathy (HCM) is the commonest genetic cardiac disease, with a prevalence of 1/500. It is caused by over 1400 different mutations, mainly involving the genes coding for sarcomere proteins. The main pathological features of HCM are left ventricular hypertrophy, diastolic dysfunction and the increased ventricular arrhythmogenesis. Predicting the risk of heart failure and lethal arrhythmias is the most challenging clinical task for HCM patient management. Moreover, there are no disease-modifying therapies that can prevent disease progression or sudden arrhythmic death in HCM patients. In this review, we will illustrate the most advanced research models and methods that have been employed for HCM studies, including preclinical tests of novel or existing drugs, along with visionary future development based on gene editing approaches. Acknowledging the advantages and limitations of the different models, and a critical consideration of the different, often conflicting result obtained using different approaches is essential for a deep understanding of HCM pathophysiology and for obtaining meaningful information on novel treatments, in order to improve patient risk stratification and therapeutic management.


Assuntos
Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Desenvolvimento de Medicamentos , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Animais , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Humanos , Modelos Biológicos
9.
J Mol Cell Cardiol ; 136: 113-124, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520610

RESUMO

BACKGROUND: Cardiovascular fibrosis is a major contributor to cardiovascular disease, the primary cause of death in patients with chronic kidney disease (CKD). We previously reported expression of endogenous Klotho in human arteries, and that CKD is a state of Klotho deficiency, resulting in vascular calcification, but myocardial expression of Klotho is poorly understood. This study aimed to further clarify endogenous Klotho's functional roles in cardiac fibrosis in patients with underlying CKD. METHODS AND RESULTS: Human atrial appendage specimens were collected during cardiac surgery from individuals with or without CKD. Cardiac fibrosis was quantified using trichrome staining. For endogenous Klotho functional studies, primary human cardiomyocytes (HCMs) were treated with uremic serum from CKD patients or recombinant human TGF-ß1. The effects of endogenous Klotho in HCMs were studied using Klotho-siRNA and Klotho-plasmid transfection. Both gene and protein expression of endogenous Klotho are found in human heart, but decreased Klotho expression is clearly associated with the degree of cardiac fibrosis in CKD patients. Moreover, we show that endogenous Klotho is expressed by HCMs and cardiac fibroblasts (HCFs) but that HCM expression is suppressed by uremic serum or TGF-ß1. Klotho knockdown or overexpression aggravates or mitigates TGF-ß1-induced fibrosis and canonical Wnt signaling in HCMs, respectively. Furthermore, co-culture of HCMs with HCFs increases TGF-ß1-induced fibrogenic proteins in HCFs, but overexpression of endogenous Klotho in HCMs mitigates this effect, suggesting functional crosstalk between HCMs and HCFs. CONCLUSIONS: Our data from analysis of human hearts as well as functional in vitro studies strongly suggests that the loss of cardiac endogenous Klotho in CKD patients, specifically in cardiomyocytes, facilitates intensified TGF-ß1 signaling which enables more vigorous cardiac fibrosis through upregulated Wnt signaling. Upregulation of endogenous Klotho inhibits pathogenic Wnt/ß-catenin signaling and may offer a novel strategy for prevention and treatment of cardiac fibrosis in CKD patients.


Assuntos
Glucuronidase/metabolismo , Miocárdio/patologia , Insuficiência Renal Crônica/complicações , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Fibrose , Glucuronidase/genética , Humanos , Proteínas Klotho , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Renal Crônica/metabolismo
10.
J Transl Med ; 16(1): 288, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348184

RESUMO

BACKGROUND: Cardiomyocytes derived from animals and induced pluripotent stem cells (iPSCs) are two main cellular models to study cardiovascular diseases, however, neither provides precise modeling of the response of mature human cardiomyocytes to disease or stress conditions. Therefore, there are emerging needs for finding an optimized primary human cardiomyocytes isolation method to provide a bona fide cellular model. METHODS AND RESULTS: Previous established protocols for the isolation of primary human cardiomyocytes are limited in their application due to relatively low cell yield and the requirement of tissue integrity. Here, we developed a novel, simplified method to isolate human cardiomyocytes robustly with improved viability from tissue slicing. Isolated cardiomyocytes showed intact morphology, retained contractility, ion flux, calcium handling, and responses to neurohormonal stimulation. In addition, we assessed the metabolic status of cardiomyocytes from different health conditions. CONCLUSION: We present a novel, simplified method for isolation of viable cardiomyocytes from human tissue.


Assuntos
Separação Celular/métodos , Cardiopatias/patologia , Modelos Cardiovasculares , Miócitos Cardíacos/patologia , Adulto , Forma Celular , Sobrevivência Celular , Átrios do Coração/patologia , Ventrículos do Coração/patologia , Humanos
11.
Ecotoxicol Environ Saf ; 161: 198-207, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885615

RESUMO

Although the strongly causal associations were between fine particulate matter (PM2.5) and cardiovascular disease, the toxic effect and potential mechanism of PM2.5 on heart was poorly understood. Thus, the aim of this study was to evaluate the cardiac toxicity of PM2.5 exposure on human cardiomyocytes (AC16). The cell viability was decreased while the LDH release was increased in a dose-dependent way after AC16 exposed to PM2.5. The reactive oxygen species (ROS) generation and production of malondialdehyde (MDA) were increased followed by the decreasing in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The damage of mitochondria was observed by ultra-structural analysis and MMP measurement. The apoptotic rate of AC16 were markedly elevated which was triggered by PM2.5. In addition, the proteins involved in mitochondria- mediated apoptosis pathway were measured. The protein levels of Caspase-3, Caspase-9 and Bax were up-regulated while the anti-apoptotic protein, Bcl-2 was down-regulated after AC16 exposed to PM2.5. In summary, our results demonstrated that mitochondria-mediated apoptosis pathway played a critical role in PM2.5-induced myocardial cytotoxicity in AC16, which suggested that PM2.5 may contribute to cardiac dysfunction.


Assuntos
Apoptose , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Material Particulado/toxicidade , Caspase 3/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miócitos Cardíacos/ultraestrutura , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
12.
BMC Complement Altern Med ; 18(1): 170, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855363

RESUMO

BACKGROUND: The collapse of mitochondrial membrane potential (ΔΨm) resulted in the cell apoptosis and heart failure. Xinshuitong Capsule (XST) could ameliorate left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) classes and the quality of life in patients with chronic heart failure in our clinical study, however, its cardioprotective mechanisms remain unclear. METHODS: Primary human cardiomyocytes were subjected to hypoxia-reoxygenation and treated with XST200, 400 and 600 µg/ml. The model group was free of XST and the control group was cultured in normal conditions. Cell viability, ΔΨm, the activity of mitochondrial respiratory chain complexes, ATPase activity, reactive oxygen species (ROS) and apoptosis cells were determined in all the groups. RESULTS: The cell viability in the XST-treated groups was significantly higher than that in the model group (P < 0.05). Coupled with the restoration of the ΔΨm, the number of polarized cells increased dose dependently in the XST-treated groups. XST also restored the lost activities of mitochondrial respiratory chain complexes I-IV induced by the oxidative stress. The total of mitochondrial ATPase activity was significantly elevated at XST400 and 600 µg/ml compared to the model group (P < 0.05). The levels of mitochondrial ROS and the number of apoptosis cells declined in the XST-treated groups compared to those in the model group (P < 0.05). CONCLUSIONS: XST, via restoration of ΔΨm and the mitochondrial respiratory chain complexes I-IV activities, and suppression of mitochondrial ROS generation and the apoptosis cells, maintained the integrity of the mitochondrial membrane to exert its cardioprotective effects in the hypoxia-reoxygenated human cardiomyocytes.


Assuntos
Cardiotônicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxigênio/metabolismo
13.
J Mol Cell Cardiol ; 106: 68-83, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28392437

RESUMO

Experimental data from human cardiac myocytes at body temperature is crucial for a quantitative understanding of clinically relevant cardiac function and development of whole-organ computational models. However, such experimental data is currently very limited. Specifically, important measurements to characterize changes in tension development in human cardiomyocytes that occur with perturbations in cell length are not available. To address this deficiency, in this study we present an experimental data set collected from skinned human cardiac myocytes, including the passive and viscoelastic properties of isolated myocytes, the steady-state force calcium relationship at different sarcomere lengths, and changes in tension following a rapid increase or decrease in length, and after constant velocity shortening. This data set is, to our knowledge, the first characterization of length and velocity-dependence of tension generation in human skinned cardiac myocytes at body temperature. We use this data to develop a computational model of contraction and passive viscoelasticity in human myocytes. Our model includes troponin C kinetics, tropomyosin kinetics, a three-state crossbridge model that accounts for the distortion of crossbridges, and the cellular viscoelastic response. Each component is parametrized using our experimental data collected in human cardiomyocytes at body temperature. Furthermore we are able to confirm that properties of length-dependent activation at 37°C are similar to other species, with a shift in calcium sensitivity and increase in maximum tension. We revise our model of tension generation in the skinned isolated myocyte to replicate reported tension traces generated in intact muscle during isometric tension, to provide a model of human tension generation for multi-scale simulations. This process requires changes to calcium sensitivity, cooperativity, and crossbridge transition rates. We apply this model within multi-scale simulations of biventricular cardiac function and further refine the parametrization within the whole organ context, based on obtaining a healthy ejection fraction. This process reveals that crossbridge cycling rates differ between skinned myocytes and intact myocytes.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Troponina C/química , Humanos , Contração Isométrica/fisiologia , Cinética , Contração Muscular/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Sarcômeros/química , Sarcômeros/metabolismo , Troponina C/metabolismo
14.
Dev Dyn ; 245(12): 1145-1158, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27599668

RESUMO

Ten years ago Yamanaka's lab identified a way to reprogram terminally differentiated cells to a pluripotent state, similar to that of embryonic stem cell. This procedure opened the road for the generation of postmitotic human cells, that have completely lost the replication potential. The initial excitement waned when it was observed that the cells produced by this method are somehow immature and do not resemble the adult phenotype. In the absence of cellular markers that recognize the various maturation steps of induced pluripotent stem cell-derived human cardiomyocytes, we propose to follow their maturation looking at their electrophysiological profile. For this reason, we are first reviewing the most common methods of differentiation, from the preliminary complex procedures to the newly-identified two-step protocols and, second, we report the electrical characteristics of the cells, through electrophysiological analysis of ionic currents that give rise to the action potential. We are aware that each protocol leads to the generation of different cardiomyocyte precursors, thus suggesting the need for a wider standardization. The identification of the electrophysiological characteristics of the cells could help in identifying the type and the maturation stage of the obtained cardiomyocyte, thus compensating for the lack of specific markers. Developmental Dynamics 245:1145-1158, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Fenômenos Eletrofisiológicos , Humanos
15.
J Mol Cell Cardiol ; 97: 125-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189885

RESUMO

Ca(2+)-activated Cl(-) current (ICl(Ca)) mediated by TMEM16A and/or Bestrophin-3 may contribute to cardiac arrhythmias. The true profile of ICl(Ca) during an actual ventricular action potential (AP), however, is poorly understood. We aimed to study the profile of ICl(Ca) systematically under physiological conditions (normal Ca(2+) cycling and AP voltage-clamp) as well as in conditions designed to change [Ca(2+)]i. The expression of TMEM16A and/or Bestrophin-3 in canine and human left ventricular myocytes was examined. The possible spatial distribution of these proteins and their co-localization with Cav1.2 was also studied. The profile of ICl(Ca), identified as a 9-anthracene carboxylic acid-sensitive current under AP voltage-clamp conditions, contained an early fast outward and a late inward component, overlapping early and terminal repolarizations, respectively. Both components were moderately reduced by ryanodine, while fully abolished by BAPTA, but not EGTA. [Ca(2+)]i was monitored using Fura-2-AM. Setting [Ca(2+)]i to the systolic level measured in the bulk cytoplasm (1.1µM) decreased ICl(Ca), while application of Bay K8644, isoproterenol, and faster stimulation rates increased the amplitude of ICl(Ca). Ca(2+)-entry through L-type Ca(2+) channels was essential for activation of ICl(Ca). TMEM16A and Bestrophin-3 showed strong co-localization with one another and also with Cav1.2 channels, when assessed using immunolabeling and confocal microscopy in both canine myocytes and human ventricular myocardium. Activation of ICl(Ca) in canine ventricular cells requires Ca(2+)-entry through neighboring L-type Ca(2+) channels and is only augmented by SR Ca(2+)-release. Substantial activation of ICl(Ca) requires high Ca(2+) concentration in the dyadic clefts which can be effectively buffered by BAPTA, but not EGTA.


Assuntos
Potenciais de Ação , Canais de Cálcio Tipo L/metabolismo , Canais de Cloreto/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Biomarcadores , Bloqueadores dos Canais de Cálcio/farmacologia , Cães , Fenômenos Eletrofisiológicos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp
17.
Methods Mol Biol ; 2735: 145-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038848

RESUMO

Heart failure is a serious clinical and economic health care problem, and its clinical progression is linked to pathological cardiac remodeling. Due to the heterogeneity of heart failure, lack of animal models to accurately represent advanced heart failure, and limited access to fresh human cardiac tissue, little is known regarding cell-type-specific mechanisms and context-specific functions of cardiomyocytes during disease development processes. While mass spectrometry has been increasingly applied to unravel changes in the proteome associated with cardiovascular physiology and disease, most studies have used homogenized tissue. Therefore, new studies using isolated cardiomyocytes are necessary to gain a better understanding of the intricate cell-type-specific molecular mechanisms underlying the pathophysiology of heart failure. This chapter describes the GENTIL method, which incorporates recent technological developments in sample handling, for isolation of cardiomyocytes from cryopreserved human cardiac tissues for use in proteomic analyses.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Humanos , Adulto , Miócitos Cardíacos/patologia , Proteômica/métodos , Insuficiência Cardíaca/patologia , Espectrometria de Massas , Proteoma
18.
Front Physiol ; 14: 1132165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875015

RESUMO

Models based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are proposed in almost any field of physiology and pharmacology. The development of human induced pluripotent stem cell-derived cardiomyocytes is expected to become a step forward to increase the translational power of cardiovascular research. Importantly they should allow to study genetic effects on an electrophysiological background close to the human situation. However, biological and methodological issues revealed when human induced pluripotent stem cell-derived cardiomyocytes were used in experimental electrophysiology. We will discuss some of the challenges that should be considered when human induced pluripotent stem cell-derived cardiomyocytes will be used as a physiological model.

19.
J Biomed Mater Res A ; 111(8): 1228-1242, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36762538

RESUMO

There is a growing interest in creating 2D cardiac tissue models that display native extracellular matrix (ECM) cues of the heart tissue. Cellular alignment alone is known to be a crucial cue for cardiac tissue development by regulating cell-cell and cell-ECM interactions. In this study, we report a simple and robust approach to create lamellar surface wrinkling patterns enabling spatial control of pattern dimensions with a wide range of pattern amplitude (A ≈ 2-55 µm) and wavelength (λ ≈ 35-100 µm). For human cardiomyocytes (hCMs) and human cardiac fibroblasts (hCFs), our results indicate that the degree of cellular alignment and pattern recognition are correlated with pattern A and λ. We also demonstrate fabrication of devices composed of micro-well arrays with user-defined lamellar patterns on the bottom surface of each well for high-throughput screening studies. Results from a screening study indicate that cellular alignment is strongly diminished with increasing seeding density. In another study, we show our ability to vary hCM/hCF seeding ratio for each well to create co-culture systems where seeding ratio is independent of cellular alignment.


Assuntos
Matriz Extracelular , Miócitos Cardíacos , Humanos , Técnicas de Cocultura , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos , Engenharia Tecidual/métodos
20.
Cell Prolif ; 55(4): e13150, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34708452

RESUMO

'Requirements for human cardiomyocytes', jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human cardiomyocytes in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packing requirements, storage requirements, transportation requirements and waste disposal requirements for human cardiomyocytes, which is designed to normalize and standardize human cardiomyocyte research and production. It was originally released by the China Society for Cell Biology on 9 January 2021. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human cardiomyocytes for applications.


Assuntos
Miócitos Cardíacos , China , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA