Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 593, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847497

RESUMO

BACKGROUND: Duplications of large genomic segments provide genetic diversity in genome evolution. Despite their importance, how these duplications are generated remains uncertain, particularly for distant duplicated genomic segments. RESULTS: Here we provide evidence of the participation of circular DNA intermediates in the single generation of some large human segmental duplications. A specific reversion of sequence order from A-B/C-D to B-A/D-C between duplicated segments and the presence of only microhomologies and short indels at the evolutionary breakpoints suggest a circularization of the donor ancestral locus and an accidental replicative interaction with the acceptor locus. CONCLUSIONS: This novel mechanism of random genomic mutation could explain several distant genomic duplications including some of the ones that took place during recent human evolution.


Assuntos
DNA Circular , Duplicações Segmentares Genômicas , DNA Circular/genética , Duplicação Gênica , Genoma , Genoma Humano , Humanos
2.
Cells ; 12(9)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37174700

RESUMO

The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias/genética
3.
Cells ; 8(2)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736359

RESUMO

BACKGROUND: Retroelements (REs) are transposable elements occupying ~40% of the human genome that can regulate genes by providing transcription factor binding sites (TFBS). RE-linked TFBS profile can serve as a marker of gene transcriptional regulation evolution. This approach allows for interrogating the regulatory evolution of organisms with RE-rich genomes. We aimed to characterize the evolution of transcriptional regulation for human genes and molecular pathways using RE-linked TFBS accumulation as a metric. Methods: We characterized human genes and molecular pathways either enriched or deficient in RE-linked TFBS regulation. We used ENCODE database with mapped TFBS for 563 transcription factors in 13 human cell lines. For 24,389 genes and 3124 molecular pathways, we calculated the score of RE-linked TFBS regulation reflecting the regulatory evolution rate at the level of individual genes and molecular pathways. Results: The major groups enriched by RE regulation deal with gene regulation by microRNAs, olfaction, color vision, fertilization, cellular immune response, and amino acids and fatty acids metabolism and detoxication. The deficient groups were involved in translation, RNA transcription and processing, chromatin organization, and molecular signaling. Conclusion: We identified genes and molecular processes that have characteristics of especially high or low evolutionary rates at the level of RE-linked TFBS regulation in human lineage.


Assuntos
Evolução Biológica , Retroelementos/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular , Ontologia Genética , Humanos , Ligação Proteica
4.
Cells ; 8(10)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597351

RESUMO

BACKGROUND: Retroelements (REs) are mobile genetic elements comprising ~40% of human DNA. They can reshape expression patterns of nearby genes by providing various regulatory sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory evolution rate of the respective genes and molecular pathways. METHODS: We calculated RE-linked enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1 regulation. RESULTS: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes and 3095 molecular pathways. We ranked genes and pathways and identified those statistically significantly enriched and deficient in H3K4me1 RE-linked regulation. CONCLUSION: Non-coding RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs, DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism showed signs of the fastest regulatory evolution, while the slowest processes were connected with immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals metabolism/ion transport, cell death, intracellular signaling pathways.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Genoma Humano , Código das Histonas , Retroelementos , Linhagem Celular Tumoral , Epigênese Genética , Humanos
5.
Cell Stem Cell ; 24(5): 724-735.e5, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006620

RESUMO

Expansion of transposable elements (TEs) coincides with evolutionary shifts in gene expression. TEs frequently harbor binding sites for transcriptional regulators, thus enabling coordinated genome-wide activation of species- and context-specific gene expression programs, but such regulation must be balanced against their genotoxic potential. Here, we show that Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) control the timely and pleiotropic activation of TE-derived transcriptional cis regulators during early embryogenesis. Evolutionarily recent SVA, HERVK, and HERVH TE subgroups contribute significantly to chromatin opening during human embryonic genome activation and are KLF-stimulated enhancers in naive human embryonic stem cells (hESCs). KZFPs of corresponding evolutionary ages are simultaneously induced and repress the transcriptional activity of these TEs. Finally, the same KZFP-controlled TE-based enhancers later serve as developmental and tissue-specific enhancers. Thus, by controlling the transcriptional impact of TEs during embryogenesis, KZFPs facilitate their genome-wide incorporation into transcriptional networks, thereby contributing to human genome regulation.


Assuntos
Cromatina/microbiologia , Elementos de DNA Transponíveis/genética , Células-Tronco Embrionárias/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Animais , Evolução Biológica , Cromatina/genética , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Especiação Genética , Hominidae , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
6.
Front Immunol ; 9: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441061

RESUMO

Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0-8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen signaling. The immunity-linked pathways were highly represented in both categories, but their functional roles were different and did not overlap. Our results point to the most quickly evolving molecular pathways in the recent and ancient evolution of human genome.


Assuntos
Regulação da Expressão Gênica/genética , Retroelementos/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Sítios de Ligação/genética , Mapeamento Cromossômico , Bases de Dados Genéticas , Humanos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
7.
Gene ; 541(1): 55-9, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24614499

RESUMO

L1 retrotransposons have been the major driver of structural variation of the human genome. L1 insertion polymorphism (LIP)-mediated genomic variation can alter the transcriptome and contribute to the divergence of human phenotypes. To assess this possibility, a genome-wide association study (GWAS) including LIPs is required. Toward this ultimate goal, the present study examined linkage disequilibrium between six LIPs and their neighboring single nucleotide polymorphisms (SNPs). Genomic PCR and sequencing of L1-plus and -minus alleles from different donors revealed that all six LIPs were in strong linkage disequilibrium with at least one SNP. In addition, comparison of syntenic regions containing the identified SNP nucleotides was performed among modern humans (L1-plus and -minus alleles), archaic humans and non-human primates, revealing two different evolutionary schemes that might have resulted in the observed strong SNP-LIP linkage disequilibria. This study provides an experimental framework and guidance for a future SNP-LIP integrative GWAS.


Assuntos
Desequilíbrio de Ligação , Elementos Nucleotídeos Longos e Dispersos , Polimorfismo de Nucleotídeo Único , Retroelementos , Alelos , Animais , Evolução Biológica , Genoma , Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Heterozigoto , Hominidae , Humanos , Íntrons , Nucleotídeos/genética , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA