RESUMO
Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-ß-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5ß1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.
Assuntos
Caveolina 1 , Colesterol , Endocitose , Células Epiteliais , Proteínas Hemolisinas , Pulmão , Microdomínios da Membrana , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Hemolisinas/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Toxinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , beta-Ciclodextrinas/farmacologia , Aderência Bacteriana , Integrina alfa5beta1/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Células A549 , Proteína ADAM10/metabolismoRESUMO
Staphylococcus aureus is a leading cause of severe pneumonia. Our recent proteomic investigations into S. aureus invasion of human lung epithelial cells revealed three key adaptive responses: activation of the SigB and CodY regulons and upregulation of the hibernation-promoting factor SaHPF. Therefore, our present study aimed at a functional and proteomic dissection of the contributions of CodY, SigB and SaHPF to host invasion using transposon mutants of the methicillin-resistant S. aureus USA300. Interestingly, disruption of codY resulted in a "small colony variant" phenotype and redirected the bacteria from (phago)lysosomes into the host cell cytoplasm. Furthermore, we show that CodY, SigB and SaHPF contribute differentially to host cell adhesion, invasion, intracellular survival and cytotoxicity. CodY- or SigB-deficient bacteria experienced faster intracellular clearance than the parental strain, underscoring the importance of these regulators for intracellular persistence. We also show an unprecedented role of SaHPF in host cell adhesion and invasion. Proteomic analysis of the different mutants focuses attention on the CodY-perceived metabolic state of the bacteria and the SigB-perceived environmental cues in bacterial decision-making prior and during infection. Additionally, it underscores the impact of the nutritional status and bacterial stress on the initiation and progression of staphylococcal lung infections.
Assuntos
Proteínas de Bactérias , Células Epiteliais , Proteômica , Humanos , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Pulmão/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Aderência Bacteriana , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fator sigmaRESUMO
Tight junction (TJ) protein cingulin (CGN) and transcription factor forkhead box protein O1 (FOXO1) contribute to the development of various cancers. Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for some cancers. HDAC inhibitors affect the expression of both CGN and FOXO1. However, the roles and regulatory mechanisms of CGN and FOXO1 are unknown in non-small cell lung cancer (NSCLC) and normal human lung epithelial (HLE) cells. In the present study, to investigate the effects of CGN and FOXO1 on the malignancy of NSCLC, we used A549 cells as human lung adenocarcinoma and primary human lung epithelial (HLE) cells as normal lung tissues and performed the knockdown of CGN and FOXO1 by siRNAs. Furthermore, to investigate the detailed mechanisms in the antitumor effects of HDAC inhibitors for NSCLC via CGN and FOXO1, A549 cells and HLE cells were treated with the HDAC inhibitors trichostatin A (TSA) and Quisinostat (JNJ-2648158). In A549 cells, the knockdown of CGN increased bicellular TJ protein claudin-2 (CLDN-2) via mitogen-activated protein kinase/adenosine monophosphate-activated protein kinase (MAPK/AMPK) pathways and induced cell migration, while the knockdown of FOXO1 increased claudin-4 (CLDN-4), decreased CGN, and induced cell proliferation. The knockdown of CGN and FOXO1 induced cell metabolism in A549 cells. TSA and Quisinostat increased CGN and tricellular TJ protein angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) in A549. In normal HLE cells, the knockdown of CGN and FOXO1 increased CLDN-4, while HDAC inhibitors increased CGN and CLDN-4. In conclusion, the knockdown of CGN via FOXO1 contributes to the malignancy of NSCLC. Both HDAC inhibitors, TSA and Quisinostat, may have potential for use in therapy for lung adenocarcinoma via changes in the expression of CGN and FOXO1.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Proteína Forkhead Box O1 , Ácidos Hidroxâmicos , Neoplasias Pulmonares , Proteínas de Junções Íntimas , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Epiteliais/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Exposure of human lung epithelial cells (A549 cell line) to the oxidant pollutant ozone (O3) alters cell membrane currents inducing its decrease, when the cell undergoes to a voltage-clamp protocol ranging from -90 to +70mV. The membrane potential of these cells is mainly maintained by the interplay of potassium and chloride currents. Our previous studies indicated the ability of O3 to activate ORCC (Outward Rectifier Chloride Channel) and consequently increases the chloride current. In this paper our aim was to understand the response of potassium current to oxidative stress challenge and to identify the kind potassium channel involved in O3 induced current changes. After measuring the total membrane current using an intracellular solution with or without potassium ions, we obtained the contribution of potassium to the overall membrane current in control condition by a mathematical approach. Repeating these experiments after O3 treatment we observed a significant decrease of Ipotassium. Treatment of the cells with Iberiotoxin (IbTx), a specific inhibitor of BK channel, we were able to verify the presence and the functionality of BK channels. In addition, the administration of 4-Aminopyridine (an inhibitor of voltage dependent K channels but not BK channels) and Tetraethylammonium (TEA) before and after O3 treatment we observed the formation of BK oxidative post-translation modifications. Our data suggest that O3 is able to inhibit potassium current by targeting BK channel. Further studies are needed to better clarify the role of this BK channel and its interplay with the other membrane channels under oxidative stress conditions. These findings can contribute to identify the biomolecular pathway induced by O3 allowing a possible pharmacological intervention against oxidative stress damage in lung tissue.
Assuntos
Bloqueadores dos Canais de Potássio , Potássio , Humanos , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Cloretos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Pulmão/metabolismo , Estresse OxidativoRESUMO
Benzo[b]fluoranthene (BbF) is a common constituent of polycyclic aromatic hydrocarbons (PAHs). While numerous studies revealed adverse effects of PAHs on human health, the health effects of individual PAHs differ, and few investigations were performed on BbF. Therefore, the present study established cytotoxicity models of human lung epithelial cells (BEAS-2B cells) and bronchial epithelial cells (16HBE cells) exposed to BbF (10, 20, and 40 µM) for 24 h to reveal the mechanisms. Results from cytotoxicity and proliferation studies demonstrated that BbF inhibited cell growth in a dose-dependent manner. Flow cytometric analysis showed that BbF induced the appearance of a sub G1 peak, S-phased arrest, and apoptosis in both cells. Mechanistic investigations illustrated that BbF promoted reactive oxygen species (ROS) production, altered the expression of oxidative stress indicators, and decreased mitochondrial membrane potential. BbF also interfered with the expression of regulators associated with mitochondria disruption pathway. Taken together, these results strongly suggested that BbF inhibited cell growth and induced apoptosis in human airway epithelial cells via ROS-mediated mitochondria disruption.
Assuntos
Células Epiteliais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Estresse Oxidativo , Apoptose , MitocôndriasRESUMO
Lung cancer is the leading cause of cancer deaths in the United States with high incidence in tobacco smokers. Arylamine N-acetyltransferase 2 (NAT2) is a xenobiotic enzyme that catalyzes both N- and O-acetylation of carcinogens present in tobacco smoke and contributes towards the genotoxicity of these carcinogens. NAT2 allelic variants result in slow, intermediate, and rapid acetylation phenotypes. A recent meta-analysis reported NAT2 non-rapid (slow and intermediate) phenotypes had a significantly increased risk of lung cancer. NAT2 activity in humans is thought to be restricted to liver and gastrointestinal tract, and no studies to our knowledge have reported the expression of NAT2 activity in immortalized human lung epithelial cells. Given the importance of NAT2 in cancer and inhalation of various carcinogens directly into the lungs, we investigated NAT2 activity in human lung epithelial cells. Both NAT1 and NAT2 protein were detected by "in-cell" Western. Arylamine N-acetyltransferase activity was determined with selective substrates for NAT1 (p-aminobenzoic acid; PABA) and NAT2 (sulfamethazine; SMZ) in the presence and absence of a selective NAT1 inhibitor. PABA N-acetylation (NAT1 activity) in cell protein lysates was abolished in the presence of 25 µM of NAT1 inhibitor whereas SMZ N-acetylation (NAT2) was unaffected. Incubation with the NAT1 inhibitor partially reduced the N-acetylation of ß-naphthylamine and the O-acetylation of N-hydroxy-4-aminobiphenyl consistent with catalysis by both NAT1 and NAT2. Immortalized human lung epithelial cells exhibited dose-dependent N-acetylation of 4-ABP with an apparent KM of 24.4 ± 5.1 µM. These data establish that NAT2 is expressed and functional in immortalized human lung epithelial cells and will help us further our understanding of NAT2 in lung cancer.
Assuntos
Arilamina N-Acetiltransferase , Neoplasias Pulmonares , Ácido 4-Aminobenzoico/metabolismo , Acetilação , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Células Epiteliais/metabolismo , Humanos , Isoenzimas/genéticaRESUMO
Bacterial pneumonia is one of the most important causes of mortality in the United States. The bacteria Klebsiella pneumoniae (KP) accounts for a significant proportion of community and hospital-acquired infections. Here, we determine that the holy basil (Ocimum sanctum) extract improves cell viability and dampens the proinflammatory cytokine response in an in vitro model of pneumonia. For this, A549, a human alveolar basal epithelial cell line, was subjected to a lethal KP model following a 24-hr pretreatment with basil extract. Bacteremia, cell viability, apoptosis, MTT assay, phagocytic capacity, cytokines, and Khe gene expression were assessed in these cells following pneumonia. Cell morphology analysis showed that holy basil protected A549 cells from KP infection-mediated effects by inhibiting cell death due to apoptosis. Additionally, in the presence of basil, A549 cells demonstrated significantly higher bactericidal capacity and phagocytosis. Administration of holy basil led to reduced expression of hypoxia-inducible factor-1/2a, nuclear factor kappa B, and Khe in the KP-infected cells while increasing interferon (IFN)-γ expression. Our results suggest that basil significantly reduced cell death in the setting of KP infection, likely via attenuation of cytokine and IFN-γ mediated signaling pathways. Holy basil is a promising therapeutic agent for managing and treating bacterial pneumonia based on its potency.
Assuntos
Óleos Voláteis , Pneumonia Bacteriana , Células Epiteliais Alveolares/metabolismo , Humanos , Interferon gama/uso terapêutico , NF-kappa B/metabolismo , Ocimum sanctum , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologiaRESUMO
Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for non-small cell lung cancer (NSCLC). However, more preclinical studies of HDAC inhibitors in NSCLC and normal lung epithelial cells are required to evaluate their antitumor activities and mechanisms. The bicellular tight junction molecule claudin-2 (CLDN-2) is highly expressed in lung adenocarcinoma tissues and increase the proliferation of adenocarcinoma cells. Downregulation of the tricellular tight junction molecule angulin-1/LSR induces malignancy via EGF-dependent CLDN-2 and TGF-ß-dependent cellular metabolism in human lung adenocarcinoma cells. In the present study, to investigate the detailed mechanisms of the antitumor activities of HDAC inhibitors in lung adenocarcinoma, human lung adenocarcinoma A549 cells and normal lung epithelial cells were treated with the HDAC inibitors Trichostatin A (TSA) and Quisinostat (JNJ-2648158) with or without TGF-ß. Both HDAC inhibitors increased anguin-1/LSR, decrease CLDN-2, promoted G1 arrest and prevented the migration of A549 cells. Furthermore, TSA but not Quisinostat with or without TGF-ß induced cellular metabolism indicated as the mitochondrial respiration measured using the oxygen consumption rate. In normal human lung epithelial cells, treatment with TSA and Quisinostat increased expression of LSR and CLDN-2 and decreased that of CLDN-1 with or without TGF-ß in 2D culture. Quisinostat but not TSA with TGF-ß increased CLDN-7 expression in 2D culture. Both HDAC inhibitors prevented disruption of the epithelial barrier measured as the permeability of FD-4 induced by TGF-ß in 2.5D culture. TSA and Quisinostat have potential for use in therapy for lung adenocarcinoma via changes in the expression of angulin-1/LSR and CLDN-2.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Junções Íntimas/antagonistas & inibidores , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Junções Íntimas/metabolismoRESUMO
With the advent of long-duration space explorations, ionizing radiation (IR) may pose a constant threat to astronauts without the protection of Earth's magnetic field, or hypomagnetic field (HMF). However, the potential biological effects of a HMF on the cellular response to IR have not been well characterized so far. In this study, immortalized human bronchial epithelial cells were exposed to X-rays under either a geomagnetic field (GMF, ~50 uT) or HMF (<50 nT) culture condition. A significant increase of the cell survival rate in HMF after radiation was observed by colony formation analysis. The kinetics of DNA double-strand breaks (DSBs), determined by γH2AX foci formation and disappearance, presented a faster decrease of foci-positive cells and a significantly lower mean number of γH2AX foci per nucleus in HMF-cultured cells than in GMF-cultured cells after radiation. In addition, a γH2AX/53BP1 colocalization assay showed an upregulated DSB recovery rate in HMF cultured cells. These findings provided the first evidence that HMF exposure may enhance the cellular DSB repair efficiency upon radiation, and consequently modulate the genotoxic effects of IR.
Assuntos
Reparo do DNA , Células Epiteliais/efeitos da radiação , Campos Magnéticos , Tolerância a Radiação , Brônquios/citologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Células Epiteliais/metabolismo , Histonas/metabolismo , Humanos , Radiação IonizanteRESUMO
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic lung inflammatory diseases. Thrombin and interleukin (IL)-8/C-X-C chemokine ligand 8 (CXCL8) play critical roles in lung inflammation. Our previous study showed that c-Src-dependent IκB kinase (IKK)/IκBα/nuclear factor (NF)-κB and mitogen-activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal-regulated kinase (ERK)/ribosomal S6 protein kinase (RSK)-dependent CAAT/enhancer-binding protein ß (C/EBPß) activation are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. In this study, we aimed to investigate the roles of p300 and C/EBPß-reliant IKKß expression in thrombin-induced IL-8/CXCL8 expression. Thrombin-induced increases in IL-8/CXCL8-luciferase activity and IL-8/CXCL8 release were inhibited by p300 small interfering (siRNA). Thrombin-caused histone H3 acetylation was attenuated by p300 siRNA. Stimulation of cells with thrombin for 12h resulted in increases in IKKß expression and phosphorylation in human lung epithelial cells. However, thrombin did not affect p65 expression. Moreover, 12h of thrombin stimulation produced increases in IKKß expression and phosphorylation, and IκBα phosphorylation, which were inhibited by C/EBPß siRNA. Finally, treatment of cells with thrombin caused increases in p300 and C/EBPß complex formation, p65 and C/EBPß complex formation, and recruitment of p300, p65, and C/EBPß to the IL-8/CXCL8 promoter. These results imply that p300-dependent histone H3 acetylation and C/EBPß-regulated IKKß expression contribute to thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Results of this study will help clarify C/EBPß signaling pathways involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Proteína p300 Associada a E1A/imunologia , Quinase I-kappa B/genética , Inflamação/imunologia , Interleucina-8/genética , Mucosa Respiratória/imunologia , Trombina/imunologia , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Pulmão/citologia , Pulmão/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismoRESUMO
OBJECTIVES: Study the gene and protein expression of NACHT-PYD-containing protein 3 (NALP3) inflammasome and extracellular regulated protein kinase (ERK), the intervention effects of sodium ferulate (SF) in human lung epithelial cells A549 under oxidative stress, and to investigate the possible mechanism. METHODS: Human lung epithelial cells A549 cultured in vitro were divided into 6 groups, including control group,H2O2(200 umol/L) group, SF group (400 ug/mL), caspase-1 blockers (Z-VAD) group (Z-VAD 20 umol/L+H2O2200 umol/L), ERK blockers (PD98059) group (PD98059 50 umol/L+H2O2 200 umol/L), and SF+H2O2 group (SF 400 ug/mL+H2O2 200 umol/L). Fluorescent quantitative real-time PCR (qRT-PCR) was performed to detect the mRNA levels of caspase-1 and NALP3, the expression of caspase-1, NALP3, phosphorylated ERK p-ERK, ERK protein were evaluated by Western blot. The level of interleukin-1 ß (IL-1ß) were detected by ELISA. RESULTS: Compared with the control group,H2O2 not only increased the mRNA and protein expression levels of caspase-1 and NALP3 and the protein expression levels of p-ERK/ERK, but also enhanced the secretion of IL-1ß in human lung epithelial cells A549 (P<0.05),while SF group showed no statistic significance of those indicators above (P>0.05). The Z-VAD group, the PD98059 group and the SF+H2O2 group resisted the effects of H2O2 on A549 cells by decreasing the mRNA and protein expressions of caspase-1 and NALP3,and the protein expression of p-ERK/ERK, as well as reducing the secretion of IL-1ß(P<0.05),when compared with the H2O2 group. CONCLUSIONS: SF may reduce the expression of caspase-1, NALP3 and IL-1ß by inhibiting ERK, so as to reduce the inflammation caused by oxidative stress.
Assuntos
Ácidos Cumáricos/farmacologia , Inflamassomos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Células A549 , Flavonoides/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismoRESUMO
Silver nanoparticles are increasingly used in various products, due to their antibacterial properties. Despite its wide spread use, only little information on possible adverse health effects exists. Therefore, the aim of this study was to assess the toxic potential of silver nanoparticles (<100 nm) in human lung epithelial (A549) cells and the underlying mechanism of its cellular toxicity. Silver nanoparticles induced dose and time-dependent cytotoxicity in A549 cells demonstrated by MTT and LDH assays. Silver nanoparticles were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS, LPO, SOD, and catalase. Further, the activities of caspases and the level of proinflammatory cytokines, namely interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly higher in treated cells. DNA damage, as measured by single cell gel electrophoresis, was also dose and time-dependent signicants in A549 cells. This study investigating the effects of silver nanoparticles in human lung epithelial cells has provided valuable insights into the mechanism of potential toxicity induced by silver nanoparticles and warrants more careful assessment of silver nanoparticles before their industrial applications.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Inflamação/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Prata/toxicidade , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Inflamação/patologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Mutagenicidade , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/citologiaRESUMO
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water has been linked to bladder, lung, kidney, liver, prostate, and skin cancers. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24h) or long (120h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24h or 120h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24h or 120h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells.
Assuntos
Arsênio/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Brônquios/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Histonas/metabolismo , Humanos , Fatores de TempoRESUMO
Exposure to airborne particulate matter (PM)2.5, a PM with aerodynamic diameter of less than 2.5 µm, is known to be associated with a variety of adverse health effects. However, the molecular mechanisms involved in fine PM toxicity are still not well characterized. The present study aims to provide new insights into the cytotoxicity of PM2.5 on human lung epithelial cells (A549) at the proteomic level. Two-dimensional difference gel electrophoresis revealed a total of 27 protein spots, whose abundance were significantly altered in A549 cells exposed to water-soluble PM2.5 extracts (WSPE). Among these, 12 spots were upregulated while 15 were downregulated. Twenty-two proteins were further identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass/mass spectrometry and database search. The results revealed that oxidative stress, metabolic disturbance, dysregulation of signal transduction, aberrant protein synthesis and degradation, as well as cytoskeleton disorganization are major factors contributing to WSPE-mediated toxicity in human lung cells. It is further proposed that induction of apoptosis through p53, c-Myc and p21 pathways may be one of the key toxicological events occurred in A549 cells under WSPE stress. The data obtained here will aid our understanding of the toxic mechanisms related to PM2.5, and develop useful biomarkers indicative of inhalable PM2.5 exposure.
Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Proteômica/métodos , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Biossíntese de Proteínas/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Coloured pyrotechnic smokes are frequently used in the military field and occasionally by civilians, but their health hazards have been little studied. The main concern could rise from inhalation of smoke particles. Our previous study showed that acute exposure to particles from a red signalling smoke (RSS) induced an antioxidant and inflammatory responses in small airway epithelial cells. The aim of this study was to further explore the toxicity of RSS particles at a more proximal level of the respiratory tract, using normal human bronchial epithelial cells grown at the Air-Liquid Interface. Acute exposure (24 h) induced an oxidative stress that persisted 24 h post-exposure, associated with particle internalization and epithelium morphological changes (cuboidal appearance and loss of cilia). Repeated exposures (4×16h) to RSS particles did not trigger oxidative stress but cell morphological changes occurred. Overall, this study provides a better overview of the toxic effects of coloured smoke particles.
Assuntos
Técnicas de Cultura de Células , Fumaça , Humanos , Brônquios , Células Epiteliais , Fumaça/efeitos adversos , Produtos do TabacoRESUMO
OBJECTIVES: The aim was to evaluate the release of particles from dental materials during wet and dry grinding and test their effects on human lung epithelia cells in-vitro. METHODS: Four dental restorative materials were used: two composites [Ceram.x® universal (Dentsply Sirona) and Filtek™ Supreme XTE (3 M)], one ceramic [VITABLOCS® Mark II (VITAy)] and a ceramic-resin material [Lava™ Ultimate (3 M)]. Material samples were ground to powder under standardized wet and dry conditions in an isolated dental room. During grinding, the particle concentrations were measured with LAS and CPC. Baseline values were measured before grinding. The particles' size was evaluated using DLS and SEM. Water was used as control. The cytotoxicity and inflammatory response of the lung cells (A549) after exposure to different concentrations (1, 3, 10, 30, 100, 300 µg/mL) of the generated dust were analyzed with LDH, WST-1 and ELISA. RESULTS: LAS and CPC revealed a high concentration of particles< 10 µm and< 1 µm respectively, into the air. Particles showed high tendency to agglomerate. DLS showed particle size distribution between 150 nm and 18 µm independently of the material composition. All materials induced significant effects (p < 0.05) on the cell membrane integrity and viability of the A549 cells. Only the ceramic particles showed a significant increase in hydroxyl radical formation at low concentrations (p < 0.05), for both wet and dry conditions. All materials except ceramic, induced a significant release of IL-8 in A549 cells at 300 µg / mL (p < 0.05). SIGNIFICANCE: Wet and dry grinding of dental materials result in release of ultrafine and fine particulate matter into the air. The in-vitro findings on the cellular response of lung cells to generated dust indicate a potential risk for human health due inhalation of the released particles. The use of water-cooling seems to be beneficial resulting in reduced release of particles compared to dry grinding.
Assuntos
Poeira , Pulmão , Humanos , Poeira/análise , Tamanho da Partícula , Células Epiteliais , ÁguaRESUMO
Chlorine (Cl2) is a common toxic industrial gas and human inhalation exposure causes tissue damage with symptoms ranging from wheezing to more severe symptoms such as lung injury or even death. Because the mechanism behind Cl2-induced cell death is not clearly understood, the present study aimed to study the cellular effects in vitro after Cl2 exposure of human A549 lung epithelial cells. In addition, the possible treatment effects of the anti-inflammatory antioxidant N-acetyl cysteine (NAC) were evaluated. Exposure of A549 cells to Cl2 (100-1000 ppm) in the cell medium induced cell damage and toxicity within 1 h in a dose-dependent manner. The results showed that 250 ppm Cl2 increased cell death and formation of apoptotic-like bodies, while 500 ppm Cl2 exposure resulted in predominantly necrotic death. Pre-treatment with NAC was efficient to prevent cell damage at lower Cl2 concentrations in part by averting the formation of apoptotic-like bodies and increasing the expression of the anti-apoptotic proteins clusterin and phosphorylated tumour protein p53(S46). Analysis showed that Cl2 induced cell death by a possibly caspase-independent mechanism, since no cleavage of caspase-3 could be detected after exposure to 250 ppm. Currently, these results justifies further research into new treatment strategies for Cl2-induced lung injury.
Assuntos
Cloro/toxicidade , Pulmão/citologia , Oxidantes/toxicidade , Células A549 , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Caspase 3 , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Citocinas/metabolismo , HumanosRESUMO
Influenza virus only encodes a dozen of viral proteins, which need to use host machinery to complete the viral life cycle. Previously, KAP1 was identified as one host protein that potentially interacts with influenza viral proteins in HEK 293 cells. However, the role of KAP1 in influenza virus replication in human lung alveolar epithelial cells and the underlying mechanism remains unclear. In this study, we first generated KAP1 KO A549 cells by CRISPR/Cas9 gene editing. KAP1 deletion had no significant effect on the cell viability and lack of KAP1 expression significantly reduced the influenza A virus replication. Moreover, we demonstrated that KAP1 is involved in the influenza virus entry, transcription/replication of viral genome, and viral protein synthesis in human lung epithelial cells and confirmed that KAP1 interacted with PB2 and NS1 viral proteins during the virus infection. Further study showed that KAP1 inhibited the production of type I IFN and overexpression of KAP1 significantly reduced the IFN-ß production. In addition, influenza virus infection induces the deSUMOylation and enhanced phosphorylation of KAP1. Our results suggested that KAP1 is required for the replication of influenza A virus and mediates the replication of influenza A virus by facilitating viral infectivity and synthesis of viral proteins, enhancing viral polymerase activity, and inhibiting the type I IFN production.
Assuntos
Vírus da Influenza A , Influenza Humana , Células Epiteliais , Células HEK293 , Humanos , Vírus da Influenza A/genética , Pulmão , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genéticaRESUMO
Inflammation involving the innate and adaptive immune systems is a normal response to infection; however, when allowed to continue unchecked, inflammation may result in several pathologies. Natural molecules with antioxidant properties can target the key players of inflammation and exert beneficial health effects. In this study, human normal bronchial (Beas-2B) and prostate (HPrEpiC) epithelial cell lines were exposed to infectious stimulation and treated with phycocyanin (PC) and palmitoylethanolamide (PEA), with the aim of demonstrating the enhanced antioxidant and anti-inflammatory properties of the combination. The cotreatment protected from cytotoxicity and greatly abated both the production of radical oxygen species (ROS) and the transcription of several inflammatory cytokines. Oxidative stress and inflammation were curtailed by affecting three main pathways: (1) inhibition of cyclooxygenase-2 enzyme and consequent decrease of signaling generating ROS; (2) increased synthesis of glutathione and therefore strengthening of the natural antioxidant defenses of the cells; (3) decreased infection-driven mitochondrial respiratory burst which generates oxidative stress. Based on the mounting interest in using nutraceuticals as adjuvants in the clinical practice, the present study unveils new mechanisms of action and enhanced efficacy of PC and PEA, supporting the possible exploitation of this combination in human disorders.
RESUMO
Human respiratory syncytial virus (RSV) is one of the major causes of childhood acute lower respiratory tract infection worldwide. Autophagy is an intracellular pathway involved in nutrient recycling. Recently, autophagy has been reported to play a role in regulating host cytokine response to several viruses, including vesicular stomatitis virus and human immunodeficiency virus. Previous in vivo studies using mouse model has shown that inhibition of autophagy reduces RSV-induced cytokine production. However, the role of autophagy in modulating RSV-induced cytokine response in human cells has not been reported. We investigated the role of autophagy in regulating the production of the cytokines C-X-C motif ligand 8 (CXCL8) and C-C motif ligand 5 (CCL5), in RSV-infected human bronchial epithelium BEAS-2B cells. Fluorescent microscopic analysis showed that RSV infection induced autophagosome formation in BEAS-2B cells. This autophagy inducing ability of RSV was further confirmed by flow cytometry. The effects of pharmacological inhibition of autophagy by SAR405 or chloroquine on cell death and cytokine release were quantified using lactate dehydrogenase assay and enzyme-linked immunosorbent assay (ELISA), respectively. We found that SAR405 or chloroquine did not cause cell death. Importantly, ELISA analysis showed that pharmacological inhibition of autophagy by SAR405 or chloroquine did not affect the productions of both CXCL5 and CXCL8. In contrast to the previous studies using mouse model, our data suggest that pharmacological inhibition of autophagy may not be a suitable strategy in controlling RSV-induced airway inflammation.