Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 186(10): 2111-2126.e20, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172564

RESUMO

Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.


Assuntos
Microglia , Organoides , Humanos , Encéfalo , Macrófagos , Fenótipo
2.
J Neuroinflammation ; 21(1): 175, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020359

RESUMO

BACKGROUND: Key functions of Ca2+ signaling in rodent microglia include monitoring the brain state as well as the surrounding neuronal activity and sensing the danger or damage in their vicinity. Microglial Ca2+ dyshomeostasis is a disease hallmark in many mouse models of neurological disorders but the Ca2+ signal properties of human microglia remain unknown. METHODS: We developed a novel genetically-encoded ratiometric Ca2+ indicator, targeting microglial cells in the freshly resected human tissue, organotypically cultured tissue slices and analyzed in situ ongoing Ca2+ signaling of decades-old microglia dwelling in their native microenvironment. RESULTS: The data revealed marked compartmentalization of Ca2+ signals, with signal properties differing across the compartments and resident morphotypes. The basal Ca2+ levels were low in ramified and high in ameboid microglia. The fraction of cells with ongoing Ca2+ signaling, the fraction and the amplitude of process Ca2+ signals and the duration of somatic Ca2+ signals decreased when moving from ramified via hypertrophic to ameboid microglia. In contrast, the size of active compartments, the fraction and amplitude of somatic Ca2+ signals and the duration of process Ca2+ signals increased along this pathway.


Assuntos
Sinalização do Cálcio , Cálcio , Microglia , Microglia/metabolismo , Humanos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Masculino , Feminino , Células Cultivadas
3.
Cell Mol Life Sci ; 80(5): 126, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37081238

RESUMO

Microglia are the tissue-resident macrophage population of the brain, specialized in supporting the CNS environment and protecting it from endogenous and exogenous insults. Nonetheless, their function declines with age, in ways that remain to be fully elucidated. Given the critical role played by microglia in neurodegenerative diseases, a better understanding of the aging microglia phenotype is an essential prerequisite in designing better preventive and therapeutic strategies. In this review, we discuss the most recent literature on microglia in aging, comparing findings in rodent models and human subjects.


Assuntos
Microglia , Senescência Celular , Humanos , Animais , Envelhecimento , Estresse Oxidativo , Transdução de Sinais , Monócitos , Eixo Encéfalo-Intestino
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473794

RESUMO

MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the ß-amyloid peptide (Aß, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that ß-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-ß, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aß, as well as inflammatory cytokines IL1-ß, IL-6, and NOS2. In cells stimulated with Aß, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.


Assuntos
Doença de Alzheimer , Biflavonoides , MicroRNAs , Humanos , Biflavonoides/farmacologia , Microglia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo
5.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254100

RESUMO

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Assuntos
Microglia , Transcriptoma , Humanos , Criança , Adolescente , Microglia/metabolismo , Longevidade , Fagocitose , Análise de Sequência de RNA
6.
Acta Neuropathol ; 146(5): 663-683, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656188

RESUMO

Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Microglia/patologia , Transtornos do Neurodesenvolvimento/patologia , Macrófagos/patologia , Neuropatologia , Encéfalo/patologia
7.
Mol Pharm ; 20(5): 2686-2701, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37066621

RESUMO

Microglia-mediated neuroinflammation is commonly associated with neurodegeneration and has been implicated in several neurological disorders, such as Alzheimer's disease and Parkinson's disease. Therefore, it is crucial to develop a detailed understanding of the interaction of potential nanocarriers with microglial cells to efficiently deliver anti-inflammatory molecules. In this study, we applied brush polymers as a modular platform to systematically investigate their association with murine (BV-2) and human (HMC3) microglial cell lines in the presence and absence of the pro-inflammatory inducer lipopolysaccharide (LPS) using flow cytometry. Brush polymers of different sizes and shapes, ranging from ellipsoid to worm-like cylinders, were prepared through a combination of the two building blocks carboxylated N-acylated poly(aminoester)s (NPAEs)-based polymers and poly(2-ethyl-2-oxazoline)-NH2 (PEtOx-NH2) and characterized by 1H NMR spectroscopy, size exclusion chromatography, and small-angle neutron scattering. Generally, ellipsoidal particles showed the highest cellular association. Moreover, while no significant differences in murine cell association were observed, the brush polymers revealed a significant accumulation in LPS-activated human microglia compared to resting cells, emphasizing their higher affinity to activated HMC3 cells. Brush polymers with the highest cell association were further modified with the anti-inflammatory agent N-acetyl cysteine (NAC) in a reversible manner. The brush polymer-NAC conjugates were found to significantly attenuate the production of interleukin 6 (p < 0.001) in LPS-activated HMC3 cells compared to LPS-activated BV-2 cells. Thus, the presented brush polymer-NAC conjugates showed a high anti-inflammatory activity in human microglia, suggesting their potential for disease-targeted therapy of microglial-mediated neuroinflammation in the future.


Assuntos
Microglia , Polímeros , Camundongos , Humanos , Animais , Microglia/metabolismo , Polímeros/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Acetilcisteína/química
8.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569616

RESUMO

HIV-associated cognitive dysfunction during combination antiretroviral therapy (cART) involves mitochondrial dysfunction, but the impact of contemporary cART on chronic metabolic changes in the brain and in latent HIV infection is unclear. We interrogated mitochondrial function in a human microglia (hµglia) cell line harboring inducible HIV provirus and in SH-SY5Y cells after exposure to individual antiretroviral drugs or cART, using the MitoStress assay. cART-induced changes in protein expression, reactive oxygen species (ROS) production, mitochondrial DNA copy number, and cellular iron were also explored. Finally, we evaluated the ability of ROS scavengers or plasmid-mediated overexpression of the antioxidant iron-binding protein, Fth1, to reverse mitochondrial defects. Contemporary antiretroviral drugs, particularly bictegravir, depressed multiple facets of mitochondrial function by 20-30%, with the most pronounced effects in latently infected HIV+ hµglia and SH-SY5Y cells. Latently HIV-infected hµglia exhibited upregulated glycolysis. Increases in total and/or mitochondrial ROS, mitochondrial DNA copy number, and cellular iron accompanied mitochondrial defects in hµglia and SH-SY5Y cells. In SH-SY5Y cells, cART reduced mitochondrial iron-sulfur-cluster-containing supercomplex and subunit expression and increased Nox2 expression. Fth1 overexpression or pre-treatment with N-acetylcysteine prevented cART-induced mitochondrial dysfunction. Contemporary cART impairs mitochondrial bioenergetics in hµglia and SH-SY5Y cells, partly through cellular iron accumulation; some effects differ by HIV latency.


Assuntos
Infecções por HIV , Neuroblastoma , Humanos , Microglia/metabolismo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neuroblastoma/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo
9.
BMC Genomics ; 23(1): 853, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575377

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). RESULTS: We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. CONCLUSIONS: These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors.


Assuntos
Lipopolissacarídeos , RNA Longo não Codificante , Humanos , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Neuroinflamatórias , Proteínas Nucleares/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Inflamação/genética , Proteínas de Ciclo Celular/genética
10.
J Neuroinflammation ; 19(1): 50, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172843

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating neurons are surrounded by activated microglia with increased secretion of interleukin-1ß (IL-1ß), driven largely by the NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopaminergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in other in vivo parkinsonism models. METHODS: Biochemical techniques including quantification of IL-1ß secretion and confocal microscopy were employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors through which these catecholamines were predicted to act were assessed with agonists in both species. RESULTS: We show in primary human microglia that dopamine, L-DOPA, and high extracellular K+, but not norepinephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1ß secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) signaling. We also show that aged mice transgenic for human C-terminally truncated (1-120) α-syn (SYN120 tg mice) display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism. CONCLUSIONS: Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflammasome in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to disease pathology.


Assuntos
Inflamassomos , Doença de Parkinson , Animais , Dopamina/metabolismo , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/patologia
11.
J Neurovirol ; 28(3): 374-382, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352315

RESUMO

Chikungunya virus (CHIKV) infection, generally characterised by fever, rash and debilitating polyarthralgia, and/or arthritis, also causes complications of the central nervous system, including encephalitis. However, the role of microglial cells in the neuropathogenesis of CHIKV is poorly understood. The current study characterised the progression of CHIKV infection in the human microglial cell line CHME-3. The susceptibility of these cells to CHIKV and the viral replication kinetics were assessed during the early and late phases of infection. The cell viability was determined using the cell viability assay. Ultrastructural changes in CHIKV infected CHME-3 cells were assessed using transmission electron microscopy. The results showed that CHME-3 cells are susceptible to CHIKV infection and support viral replication with no significant loss in cell viability until 72 h post infection. Ultrastructural studies revealed the formation of cytopathic vacuoles-I (CPV-I) in the early stages and CPV-II in later stages with several virions organized along the membrane of CPV-II. Profuse vacuolation was observed in the later stages of infection. Abnormal giant mitochondria with altered cristae were observed in infected cells with an electron-dense matrix. The study establishes CHME-3 cells as a potential model for investigating the role of human microglial cells in neuropathogenicity of CHIKV.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Linhagem Celular , Vírus Chikungunya/fisiologia , Humanos , Microglia/patologia , Replicação Viral/fisiologia
12.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628555

RESUMO

The complexity of the retinal structure reflects on the difficulty to describe its composite cell interactions. Microglia is responsible for the immune reaction to inflammatory stimuli during diabetic retinopathy (DR), but most studies still use rodent cells. We characterized a commercially available immortalized human microglial line and tested its susceptibility to inflammation, to study the interactions between the neuro-vascular retinal portions in species-specific models. After checking the expression of microglial markers, we tried lipopolysaccharide (LPS) stimulation and several pro-inflammatory cocktails to select the best combination able to induce a significant M1 (inflammatory) response. We measured M1 induction through the expression of pro- and anti-inflammatory molecules and performed morphologic and functional assays. Marker expression confirmed the human microglial derivation of these cells. Differently from rodents, LPS did not induce a M1 profile. The best pro-inflammatory stimulus was an interleukin-1ß + tumor necrosis factor-α + interferon-γ cocktail, which induced morphology changes and increased proliferation, apoptosis, migration, reactive oxygen species, and the expression of inflammatory cytokines and miRNAs. In conclusion, this microglial line proved potentially useful to investigate the cascade of events leading to DR. In perspective, co-culture models involving microvascular cells will help in the understanding of multifaceted interactions of the neurovascular unit.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo
13.
J Neurosci ; 40(7): 1373-1388, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31896671

RESUMO

Microglia exhibit multiple, phenotype-dependent motility patterns often triggered by purinergic stimuli. However, little data exist on motility of human microglia in pathological situations. Here we examine motility of microglia stained with a fluorescent lectin in tissue slices from female and male epileptic patients diagnosed with mesial temporal lobe epilepsy or cortical glioma (peritumoral cortex). Microglial shape varied from ramified to amoeboid cells predominantly in regions of high neuronal loss or closer to a tumor. Live imaging revealed unstimulated or purine-induced microglial motilities, including surveillance movements, membrane ruffling, and process extension or retraction. At different concentrations, ADP triggered opposing motilities. Low doses triggered process extension. It was suppressed by P2Y12 receptor antagonists, which also reduced process length and surveillance movements. Higher purine doses caused process retraction and membrane ruffling, which were blocked by joint application of P2Y1 and P2Y13 receptor antagonists. Purinergic effects on motility were similar for all microglia tested. Both amoeboid and ramified cells from mesial temporal lobe epilepsy or peritumoral cortex tissue expressed P2Y12 receptors. A minority of microglia expressed the adenosine A2A receptor, which has been linked with process withdrawal of rodent cells. Laser-mediated tissue damage let us test the functional significance of these effects. Moderate damage induced microglial process extension, which was blocked by P2Y12 receptor antagonists. Overall, the purine-induced motility of human microglia in epileptic tissue is similar to that of rodent microglia in that the P2Y12 receptor initiates process extension. It differs in that retraction is triggered by joint activation of P2Y1/P2Y13 receptors.SIGNIFICANCE STATEMENT Microglial cells are brain-resident immune cells with multiple functions in healthy or diseased brains. These diverse functions are associated with distinct phenotypes, including different microglial shapes. In the rodent, purinergic signaling is associated with changes in cell shape, such as process extension toward tissue damage. However, there are little data on living human microglia, especially in diseased states. We developed a reliable technique to stain microglia from epileptic and glioma patients to examine responses to purines. Low-intensity purinergic stimuli induced process extension, as in rodents. In contrast, high-intensity stimuli triggered a process withdrawal mediated by both P2Y1 and P2Y13 receptors. P2Y1/P2Y13 receptor activation has not previously been linked to microglial morphological changes.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Glioma/fisiopatologia , Microglia/fisiologia , Receptores Purinérgicos P2Y12/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Receptores Purinérgicos P2/fisiologia , Neoplasias Supratentoriais/fisiopatologia , Difosfato de Adenosina/farmacologia , Adulto , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/patologia , Feminino , Glioma/patologia , Humanos , Microscopia Intravital , Masculino , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Pessoa de Meia-Idade , Lectinas de Plantas , Agonistas Purinérgicos/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Neoplasias Supratentoriais/patologia , Esclerose Tuberosa/complicações
14.
Glia ; 69(10): 2332-2348, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309082

RESUMO

Microglia are the resident immune cells of the brain, and play essential roles in neuronal development, homeostatic function, and neurodegenerative disease. Human microglia are relatively different from mouse microglia. However, most research on human microglia is performed in vitro, which does not accurately represent microglia characteristics under in vivo conditions. To elucidate the in vivo characteristics of human microglia, methods have been developed to generate and transplant induced pluripotent or embryonic stem cell-derived human microglia into neonatal or adult mouse brains. However, its widespread use remains limited by the technical difficulties of generating human microglia, as well as the need to use immune-deficient mice and conduct invasive surgeries. To address these issues, we developed a simplified method to generate induced pluripotent stem cell-derived human microglia and transplant them into the brain via a transnasal route in immunocompetent mice, in combination with a colony stimulating factor 1 receptor antagonist. We found that human microglia were able to migrate through the cribriform plate to different regions of the brain, proliferate, and become the dominant microglia in a region-specific manner by occupying the vacant niche when exogenous human cytokine is administered, for at least 60 days.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Transplante de Células-Tronco , Animais , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Humanos , Camundongos , Microglia , Nariz , Transplante de Células-Tronco/métodos
15.
Glia ; 69(6): 1413-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33506583

RESUMO

Synucleinopathies such as Parkinson's disease (PD) are hallmarked by α-synuclein (α-syn) pathology and neuroinflammation. This neuroinflammation involves activated microglia with increased secretion of interleukin-1ß (IL-1ß). The main driver of IL-1ß secretion from microglia is the NLRP3 inflammasome. A critical link between microglial NLRP3 inflammasome activation and the progression of both α-syn pathology and dopaminergic neurodegeneration has been identified in various PD models in vivo. α-Syn is known to activate the microglial NLRP3 inflammasome in murine models, but its relationship to this inflammasome in human microglia has not been established. In this study, IL-1ß secretion from primary mouse microglia induced by α-syn fibrils was dependent on NLRP3 inflammasome assembly and caspase-1 activity, as previously reported. We show that exposure of primary human microglia to α-syn fibrils also resulted in significant IL-1ß secretion that was dependent on inflammasome assembly and involved the recruitment of caspase-1 protein to inflammasome scaffolds as visualized with superresolution microscopy. While canonical IL-1ß secretion was clearly dependent on caspase-1 enzymatic activity, this activity was less clearly involved for α-syn-induced IL-1ß secretion from human microglia. This work presents similarities between primary human and mouse microglia in the mechanisms of activation of the NLRP3 inflammasome by α-syn, but also highlights evidence to suggest that there may be a difference in the requirement for caspase-1 activity in IL-1ß output. The data represent a novel characterization of PD-related NLRP3 inflammasome activation in primary human microglia and further implicate this mechanism in the pathology underlying PD.


Assuntos
Inflamassomos , Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Caspase 1 , Humanos , Interleucina-1beta , Camundongos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias
16.
Acta Neuropathol ; 142(6): 923-936, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34623511

RESUMO

As extremely sensitive immune cells, microglia act as versatile watchdogs of the central nervous system (CNS) that tightly control tissue homeostasis. Therefore, microglial activation is an early and easily detectable hallmark of virtually all neuropsychiatric, neuro-oncological, neurodevelopmental, neurodegenerative and neuroinflammatory diseases. The recent introduction of novel high-throughput technologies and several single-cell methodologies as well as advances in epigenetic analyses helped to identify new microglia expression profiles, enhancer-landscapes and local signaling cues that defined diverse previously unappreciated microglia states in the healthy and diseased CNS. Here, we give an overview on the recent developments in the field of microglia biology and provide a practical guide to analyze disease-associated microglia phenotypes in both the murine and human CNS, on several morphological and molecular levels. Finally, technical limitations, potential pitfalls and data misinterpretations are discussed as well.


Assuntos
Microglia , Animais , Doenças do Sistema Nervoso Central/patologia , Humanos , Camundongos , Neuropatologia , Fenótipo
17.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842681

RESUMO

Oxyresveratrol (OXY), a major phytochemical component derived from several plants, has been proved to have several pharmacological properties. However, the role of OXY in regulating neuroinflammation is still unclear. Here, we focused mainly on the anti-neuroinflammatory effects at the cellular level of OXY in the interleukin-1 beta (IL-1ß)-stimulated HMC3 human microglial cell line. We demonstrated that OXY strongly decreased the release of IL-6 and MCP-1 from HMC3 cells stimulated with IL-1ß. Nevertheless, IL-1ß could not induce the secretion of TNF-α and CXCL10 in this specific cell line, and that OXY did not have any effects on reducing the basal level of these cytokines in the sample culture supernatants. The densitometry analysis of immunoreactive bands from Western blot clearly indicated that IL-1ß does not trigger the nuclear factor-kappa B (NF-κB) signaling. We discovered that OXY exerted its anti-inflammatory role in IL-1ß-induced HMC3 cells by suppressing IL-1ß-induced activation of the PI3K/AKT/p70S6K pathway. Explicitly, the presence of OXY for only 4 h could strongly inhibit AKT phosphorylation. In addition, OXY had moderate effects on inhibiting the activation of ERK1/2. Results from immunofluorescence study further confirmed that OXY inhibited the phosphorylation of AKT and ERK1/2 MAPK upon IL-1ß stimulation in individual cells. These findings suggest that the possible anti-inflammatory mechanisms of OXY in IL-1ß-induced HMC3 cells are mainly through its ability to suppress the PI3K/AKT/p70S6K and ERK1/2 MAPK signal transduction cascades. In conclusion, our study provided accumulated data that OXY is able to suppress IL-1ß stimulation signaling in human microglial cells, and we believe that OXY could be a probable pharmacologic agent for altering microglial function in the treatment of neuroinflammation.


Assuntos
Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estilbenos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/toxicidade , Interleucina-6/metabolismo , Microglia/metabolismo , Microglia/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(45): E7049-E7058, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27663735

RESUMO

We had reported elevated serum levels of the peptide neurotensin (NT) in children with autism spectrum disorders (ASD). Here, we show that NT stimulates primary human microglia, the resident immune cells of the brain, and the immortalized cell line of human microglia-SV40. NT (10 nM) increases the gene expression and release (P < 0.001) of the proinflammatory cytokine IL-1ß and chemokine (C-X-C motif) ligand 8 (CXCL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 from human microglia. NT also stimulates proliferation (P < 0.05) of microglia-SV40. Microglia express only the receptor 3 (NTR3)/sortilin and not the NTR1 or NTR2. The use of siRNA to target sortilin reduces (P < 0.001) the NT-stimulated cytokine and chemokine gene expression and release from human microglia. Stimulation with NT (10 nM) increases the gene expression of sortilin (P < 0.0001) and causes the receptor to be translocated from the cytoplasm to the cell surface, and to be secreted extracellularly. Our findings also show increased levels of sortilin (P < 0.0001) in the serum from children with ASD (n = 36), compared with healthy controls (n = 20). NT stimulation of microglia-SV40 causes activation of the mammalian target of rapamycin (mTOR) signaling kinase, as shown by phosphorylation of its substrates and inhibition of these responses by drugs that prevent mTOR activation. NT-stimulated responses are inhibited by the flavonoid methoxyluteolin (0.1-1 µM). The data provide a link between sortilin and the pathological findings of microglia and inflammation of the brain in ASD. Thus, inhibition of this pathway using methoxyluteolin could provide an effective treatment of ASD.

19.
J Neurovirol ; 23(1): 33-46, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27538994

RESUMO

Microglia cells are the major reservoir of HIV-1 (HIV) within the CNS. However, current models using transformed cell lines are not representative of primary microglia and fetal brain samples for isolation of primary human microglia (HMG) are increasingly difficult to obtain. Here, we describe a monocyte-derived microglia (MMG) cell model of HIV infection that recapitulates infection of primary HMG. CD14+ cells isolated from healthy donors were cultured with M-CSF, beta-nerve growth factor, GM-CSF, and CCL2, and compared to HMG. MMG and HMG cells were infected with HIV and viral replication was detected by p24 antigen. Both MMG and HMG cells were found to acquire spindle shape with few branched or unbranched processes at their ends during the second week in culture and both were found to be CD11b+/ CD11c+/ CD14+/ CD45+/ CD195+/ HLADRlow/ CD86low/ CD80+. Whereas hT-Hµglia and HMC3 transformed cell lines are deficient in human microglia signature genes (C1Q, GAS6, GPR34, MERTK, PROS1, and P2RY12), MMG cells expressed all of these genes. Additionally, MMG expressed all the microglia signature miRNA (miR-99a, miR125b-5p, and miR-342-3p). Both MMG and HMG produced ROS and phagocytosed labeled zymosan particles upon PMA stimulation. MMG and HMG infected with HIV produced equivalent levels of HIV p24 antigen in culture supernatants for 30 days post-infection. Thus, we have developed and characterized a microglia cell model of HIV infection derived from primary monocytes that recapitulates the phenotypic and molecular properties of HMG, is superior to transformed cell lines, and has similar HIV replication kinetics to HMG.


Assuntos
Proteína do Núcleo p24 do HIV/genética , HIV-1/fisiologia , Microglia/virologia , Modelos Biológicos , Monócitos/virologia , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Forma Celular , Quimiocina CCL2/farmacologia , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteína do Núcleo p24 do HIV/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Monócitos/efeitos dos fármacos , Monócitos/patologia , Fator de Crescimento Neural/farmacologia , Fagocitose , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral
20.
Virol J ; 14(1): 8, 2017 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088249

RESUMO

BACKGROUND: Japanese encephalitis virus (JEV) is a neurotropic flavivirus causing mortality and morbidity in humans. Severe Japanese encephalitis cases display strong inflammatory responses in the central nervous system and an accumulation of viral particles in specific brain regions. Microglia cells are the unique brain-resident immune cell population with potent migratory functions and have been proposed to act as a viral reservoir for JEV. Animal models suggest that the targeting of microglia by JEV is partially responsible for inflammatory reactions in the brain. Nevertheless, the interactions between human microglia and JEV are poorly documented. METHODS: Using human primary microglia and a new model of human blood monocyte-derived microglia, the present study explores the interaction between human microglia and JEV as well as the role of these cells in viral transmission to susceptible cells. To achieve this work, vaccine-containing inactivated JEV and two live JEV strains were applied on human microglia. RESULTS: Live JEV was non-cytopathogenic to human microglia but increased levels of CCL2, CXCL9 and CXCL10 in such cultures. Furthermore, human microglia up-regulated the expression of the fraktalkine receptor CX3CR1 upon exposure to both JEV vaccine and live JEV. Although JEV vaccine enhanced MHC class II on all microglia, live JEV enhanced MHC class II mainly on CX3CR1+ microglia cells. Importantly, human microglia supported JEV replication, but infectivity was only transmitted to neighbouring cells in a contact-dependent manner. CONCLUSION: Our findings suggest that human microglia may be a source of neuronal infection and sustain JEV brain pathogenesis.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Interações Hospedeiro-Patógeno , Microglia/virologia , Replicação Viral , Células Cultivadas , Quimiocinas/biossíntese , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA