Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(43): e2404199, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38949393

RESUMO

The performance of perovskite solar cells has been continuously improving. However, humidity stability has become a key problem that hinders its promotion in the process of commercialization. A buffer layer deposited by atomic layer deposition is a very helpful method to solve this problem. In this work, MgO film is deposited between Spiro-OMeTAD and electrode by low-temperature atomic layer deposition at 80 °C, which resists the erosion of water vapor, inhibits the migration of electrode metal ions and the decomposition products of perovskite, then finally improves the stability of the device. At the same time, the MgO buffer layer can passivate the defects of porous Spiro, thus enhancing carrier transport efficiency and device performance. The Cs0.05(FAPbI3)0.85(MAPbBr3)0.15 perovskite device with a MgO buffer layer has displayed PCE of 22.74%, also with a high Voc of 1.223 V which is an excellent performance in devices with same perovskite component. Moreover, the device with a MgO buffer layer can maintain 80% of the initial efficiency after 7200 h of storage at 35% relative humidity under room temperature. This is a major achievement for humidity stability in the world, providing more ideas for further improving the stability of perovskite devices.

2.
Angew Chem Int Ed Engl ; 62(5): e202215680, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36446742

RESUMO

Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10-8  S cm-1 ) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li-Li symmetric cells with 30 times longer cycling life and Li-LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li-LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm-2 . The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.

3.
ACS Appl Mater Interfaces ; 16(6): 7904-7916, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38302102

RESUMO

Noncontact triboelectric sensors (TESs) have the potential to enhance self-powered sensing performance by eliminating the need for physical contact. This study demonstrates a strategy to construct noncontact TES that enables self-powered sensing and vibration signal acquisition with high sensitivity and wide bandwidth. The incorporation of carbon nanotubes into nitrocellulose (CNTs/NC) endows the tribopositive layer with larger inner micro/nanocapacitances, consequently augmenting the charge storage capacity. As a result, the contactless sensing performance of CNTs/NC-based TES (CNTs/NC-TES) was enhanced by 146%. Correspondingly, the related theory and working mechanism of noncontact sensing were demonstrated. Furthermore, the CNTs/NC-TES exhibits optimal distance response sensitivity of 57.10 V mm-1, a wide-bandwidth response from 0.1 to 4000 Hz, and relative humidity (RH) stability. This contactless CNTs/NC-TES has the potential for high sensitivity and wide frequency vibration monitoring in a high-RH environment.

4.
Talanta ; 277: 126383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852345

RESUMO

Chemical warfare agents (CWAs) are toxic that pose a threat to the environment and human health, even trace amounts of CWAs can be fatal. In view of this, there is an urgent need to develop gas sensors for trace detection and ultrafast response of CWAs. Herein, an optical gas sensor has been proposed based on metal-organic frameworks (MOFs) three-dimensional (3D) photonic crystal to detect trace CWAs' simulant (dimethyl methylphosphonate, DMMP) in different atmospheric humidity (RH 20 %, RH 40 %, RH 60 %, RH 80 %). At relative humidity (RH) of 20 %, the sensor shows excellent selectivity of DMMP due to the specific interactions of van der Waals force between UiO-67 and phosphoryl oxygen (OP) group of DMMP (C3H9O3P), the ultrahigh sensitivity (42.7 ppb), ultrafast response (0.5 s) are profit from the ordered superstructure of 3D photonic crystal and its complete photonic bandgap. At higher humidity (RH 40%-80 %), the sensor shows excellent stability, long-term repeatability, and it still keeps ultrahigh sensitivity (12.1 ppb), ultrafast response (0.49 s) for DMMP at RH 80 %. Moreover, an optical gas sensor array has been prepared to solve the problem of cross-sensitive between DMMP and other CWAs at highest humidity (RH ≥ 80 %), the average classification accuracy can reach 98.6 %.

5.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38139767

RESUMO

This study investigates the influence of humidity on the dissolution behavior and microstructure of drugs in crystalline solid dispersions (CSDs). Using Bifonazole (BFZ) as a model drug, CSDs were prepared through spray drying with carriers such as Poloxamer 188 (P188), Poloxamer 407 (P407), and polyethylene glycol 8000 (PEG8000). The solubilization effect and mechanism were initially evaluated, followed by an examination of the impact of humidity (RH10%) on the dissolution behavior of CSDs. Furthermore, the influence of humidity on the microstructure of CSDs was investigated, and factors affecting the humidity stability of CSDs were summarized. Significant enhancements in the intrinsic dissolution rate (IDR) of BFZ in CSDs were observed due to changes in crystalline size and crystallinity, with the CSD-P188 system exhibiting the best performance. Following humidity treatment, the CSD-P407 system demonstrated the least change in the IDR of BFZ, indicating superior stability. The CSD-P407 system was followed by the CSD-P188 system, with the CSD-PEG8000 system exhibiting the least stability. Further analysis of the microstructure revealed that while humidity had negligible effects on the crystalline size and crystallinity of BFZ in CSDs, it had a significant impact on the distribution of BFZ on the CSD surface. This can be attributed to the water's potent plasticizing effect, which significantly alters the molecular mobility of BFZ. Additionally, the compatibility of the three polymers with BFZ differs, with CSD-P407 > CSD-P188 > CSD-PEG8000. Under the continuous influence of water, stronger compatibility leads to lower molecular mobility and more uniform drug distribution on the CSD surface. Enhancing the compatibility of drugs with polymers can effectively reduce the mobility of BFZ in CSDs, thereby mitigating changes caused by water and ultimately stabilizing the surface composition and dissolution behavior of drugs in CSDs.

6.
Nanomicro Lett ; 15(1): 175, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428245

RESUMO

To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.

7.
Adv Mater ; 35(42): e2304150, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37463023

RESUMO

Inorganic metal halide perovskites such as CsPbI3 are promising for high-performance, reproducible, and robust solar cells. However, inorganic perovskites are sensitive to humidity, which causes the transformation from the black phase to the yellow δ, non-perovskite phase. Such phase instability has been a significant challenge to long-term operational stability. Here, a surface dimensionality reduction strategy is reported, using 2-(4-aminophenyl)ethylamine cation to construct a Dion-Jacobson 2D phase that covers the surface of the 3D inorganic perovskite structure. The Dion-Jacobson layer mainly grows at the grain boundaries of the perovskite, effectively passivating surface defects and providing favourable interfacial charge transfer. The resulting inorganic perovskite films exhibit excellent humidity resistance when submerged in an aqueous solution (isopropanol:water = 4:1 v/v) and exposed to a 50% humidity air atmosphere. The Dion-Jacobson 2D/3D inorganic perovskite solar cell (PSC) achieves a power conversion efficiency (PCE) of 19.5% with a Voc of 1.197 eV. It retains 83% of its initial PCE after 1260 h of maximum power point tracking under 1.2 sun illumination. The work demonstrates an effective way for stabilizing efficient inorganic perovskite solar cells.

8.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361180

RESUMO

Humid conditions can disrupt the triboelectric signal generation and reduce the accuracy of triboelectric mechanical sensors. This study demonstrates a novel design approach using atomic layer deposition (ALD) to enhance the humidity resistance of triboelectric mechanical sensors. Titanium oxide (TiOx) was deposited on polytetrafluoroethylene (PTFE) film as a moisture passivation layer. To determine the effective ALD process cycle, the TiOx layer was deposited with 100 to 2000 process cycles. The triboelectric behavior and surface chemical bonding states were analyzed before and after moisture exposure. The ALD-TiOx-deposited PTFE showed three times greater humidity stability than pristine PTFE film. Based on the characterization of TiOx on PTFE film, the passivation mechanism was proposed, and it was related to the role of the oxygen-deficient sites in the TiOx layer. This study could provide a novel way to design stable triboelectric mechanical sensors in highly humid environments.

9.
Adv Sci (Weinh) ; 7(3): 1901840, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042556

RESUMO

Many organic cations in halide perovskites have been studied for their application in perovskite solar cells (PSCs). Most organic cations in PSCs are based on the protic nitrogen cores, which are susceptible to deprotonation. Here, a new candidate of fully alkylated sulfonium cation (butyldimethylsulfonium; BDMS) is designed and successfully assembled into PSCs with the aim of increasing humidity stability. The BDMS-based perovskites retain the structural and optical features of pristine perovskite, which results in the comparable photovoltaic performance. However, the fully alkylated aprotic nature of BDMS shows a much more pronounced effect on the increase in humidity stability, which emphasizes a generic electronic difference between protic ammonium and aprotic sulfonium cation. The current results would pave a new way to explore cations for the development of promising PSCs.

10.
ACS Appl Mater Interfaces ; 11(8): 8242-8249, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30706703

RESUMO

Poor stability always restricts the application of all-inorganic perovskite quantum dots (PQDs). Herein, 2D hexagonal boron nitride ( h-BN) nanosheets were firstly utilized to stabilize CsPbBr3 PQDs through a facile heterogeneous nucleation-growth process at room temperature. In synthesized h-BN/CsPbBr3 PQD nanocomposites, cubic CsPbBr3 PQDs adhere on h-BN nanosheet surfaces, benefiting from the high specific surface area and abundant mesopores of 2D nanosheets. The nanocomposites prepared at optimized loading of h-BN nanosheets and reaction time display good green-emitting performance with a narrow full width at half maximum of ∼20.0 nm and high color purity of 92.0%. Unique 2D structure and excellent thermal conductivity of h-BN nanosheets endow the h-BN/CsPbBr3 PQD nanocomposites with significantly enhanced humidity stability and thermal stability. The white light-emitting diodes (LEDs) assembled with green-emitting nanocomposites, a blue chip, and a commercial red phosphor possess a low correlated color temperature of 4190 K, color-rendering index of 76, and high luminous efficacy of 57 lm/W. Further, the color gamut of the synthetic white light based on blue-emitting h-BN/CsPbBr1.5Cl1.5 PQDs, green-emitting h-BN/CsPbBr3 PQDs, and red-emitting h-BN/CsPbBr1.2I1.8 PQDs is 114% of the National Television System Committee standard. This work paves a new way for utilizing 2D nanomaterials to synthesize stable all-inorganic PQDs for white LEDs and displays.

11.
ACS Appl Mater Interfaces ; 9(10): 9204-9212, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28224796

RESUMO

Self-assembled small molecules (SASMs) are effective materials to improve the interfacial properties between a metal/metal oxide and the overlying organic layer. In this work, surface modification of indium tin oxide (ITO) electrode by a series of Cl-containing SASMs has been exploited to control the surface properties of ITO and device performance for organic photovoltaics. Depending on the position and degrees of chlorination for SASMs, we could precisely manipulate the work function of the ITO electrode, and chemisorption of SASMs on ITO as well. Consequently, a power conversion efficiency (PCE) of 9.1% was achieved with tetrachlorobenzoic acid (2,3,4,5-CBA) SASM by a simple solution-processed method based on PTB7-Th-PC71BM heterojunction. More intriguingly, we discover that device performance is closely associated with the humidity of ambient conditions. When the humidity increases from 35-55% to 80-95%, device performance with 2,3,4,5-CBA has negligible reduction, in contrast with other SASMs that show a sharp reduction in PCEs. The increased device performance is primarily attributed to a matched work function, stable chemisorption, and beneficial wettability with overlying active layer. These findings suggest an available approach for manufacturing inexpensive, stable, efficient, and environmentally friendly organic photovoltaics by appropriate self-assembled small molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA