Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677926

RESUMO

Carbon microcoils (CMCs) were formed on stainless steel substrates using C2H2 + SF6 gas flows in a thermal chemical vapor deposition (CVD) system. The manipulation of the SF6 gas flow rate and the SF6 gas flow injection time was carried out to obtain controllable CMC geometries. The change in CMC geometry, especially CMC diameter as a function of SF6 gas flow injection time, was remarkable. In addition, the incorporation of H2 gas into the C2H2 + SF6 gas flow system with cyclic SF6 gas flow caused the formation of the hybrid of carbon nanofibers-carbon microcoils (CNFs-CMCs). The hybrid of CNFs-CMCs was composed of numerous small-sized CNFs, which formed on the CMCs surfaces. The electromagnetic wave shielding effectiveness (SE) of the heating film, made by the hybrids of CNFs-CMCs incorporated carbon paste film, was investigated across operating frequencies in the 1.5-40 GHz range. It was compared to heating films made from commercial carbon paste or the controllable CMCs incorporated carbon paste. Although the electrical conductivity of the native commercial carbon paste was lowered by both the incorporation of the CMCs and the hybrids of CNFs-CMCs, the total SE values of the manufactured heating film increased following the incorporation of these materials. Considering the thickness of the heating film, the presently measured values rank highly among the previously reported total SE values. This dramatic improvement in the total SE values was mainly ascribed to the intrinsic characteristics of CMC and/or the hybrid of CNFs-CMCs contributing to the absorption shielding route of electromagnetic waves.


Assuntos
Calefação , Nanofibras , Carbono , Condutividade Elétrica , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA