Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Circulation ; 150(4): 272-282, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38841854

RESUMO

BACKGROUND: A hypothetical concern has been raised that sacubitril/valsartan might cause cognitive impairment because neprilysin is one of several enzymes degrading amyloid-ß peptides in the brain, some of which are neurotoxic and linked to Alzheimer-type dementia. To address this, we examined the effect of sacubitril/valsartan compared with valsartan on cognitive function in patients with heart failure with preserved ejection fraction in a prespecified substudy of PARAGON-HF (Prospective Comparison of Angiotensin Receptor Neprilysin Inhibitor With Angiotensin Receptor Blocker Global Outcomes in Heart Failure With Preserved Ejection Fraction). METHODS: In PARAGON-HF, serial assessment of cognitive function was conducted in a subset of patients with the Mini-Mental State Examination (MMSE; score range, 0-30, with lower scores reflecting worse cognitive function). The prespecified primary analysis of this substudy was the change from baseline in MMSE score at 96 weeks. Other post hoc analyses included cognitive decline (fall in MMSE score of ≥3 points), cognitive impairment (MMSE score <24), or the occurrence of dementia-related adverse events. RESULTS: Among 2895 patients included in the MMSE substudy with baseline MMSE score measured, 1453 patients were assigned to sacubitril/valsartan and 1442 to valsartan. Their mean age was 73 years, and the median follow-up was 32 months. The mean±SD MMSE score at randomization was 27.4±3.0 in the sacubitril/valsartan group, with 10% having an MMSE score <24; the corresponding numbers were nearly identical in the valsartan group. The mean change from baseline to 96 weeks in the sacubitril/valsartan group was -0.05 (SE, 0.07); the corresponding change in the valsartan group was -0.04 (0.07). The mean between-treatment difference at week 96 was -0.01 (95% CI, -0.20 to 0.19; P=0.95). Analyses of a ≥3-point decline in MMSE, decrease to a score <24, dementia-related adverse events, and combinations of these showed no difference between sacubitril/valsartan and valsartan. No difference was found in the subgroup of patients tested for apolipoprotein E ε4 allele genotype. CONCLUSIONS: Patients with heart failure with preserved ejection fraction in PARAGON-HF had relatively low baseline MMSE scores. Cognitive change, measured by MMSE, did not differ between treatment with sacubitril/valsartan and treatment with valsartan in patients with heart failure with preserved ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01920711.


Assuntos
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compostos de Bifenilo , Cognição , Combinação de Medicamentos , Insuficiência Cardíaca , Volume Sistólico , Tetrazóis , Valsartana , Humanos , Compostos de Bifenilo/uso terapêutico , Valsartana/uso terapêutico , Valsartana/efeitos adversos , Aminobutiratos/uso terapêutico , Aminobutiratos/efeitos adversos , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Feminino , Idoso , Cognição/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/efeitos adversos , Pessoa de Meia-Idade , Tetrazóis/uso terapêutico , Tetrazóis/efeitos adversos , Estudos Prospectivos , Neprilisina/antagonistas & inibidores , Resultado do Tratamento , Disfunção Cognitiva/tratamento farmacológico , Idoso de 80 Anos ou mais
2.
Proc Natl Acad Sci U S A ; 119(43): e2204414119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252020

RESUMO

Predictions of the structures of stoichiometric, fractional, or nonstoichiometric hydrates of organic molecular crystals are immensely challenging due to the extensive search space of different water contents, host molecular placements throughout the crystal, and internal molecular conformations. However, the dry frameworks of these hydrates, especially for nonstoichiometric or isostructural dehydrates, can often be predicted from a standard anhydrous crystal structure prediction (CSP) protocol. Inspired by developments in the field of drug binding, we introduce an efficient data-driven and topologically aware approach for predicting organic molecular crystal hydrate structures through a mapping of water positions within the crystal structure. The method does not require a priori specification of water content and can, therefore, predict stoichiometric, fractional, and nonstoichiometric hydrate structures. This approach, which we term a mapping approach for crystal hydrates (MACH), establishes a set of rules for systematic determination of favorable positions for water insertion within predicted or experimental crystal structures based on considerations of the chemical features of local environments and void regions. The proposed approach is tested on hydrates of three pharmaceutically relevant compounds that exhibit diverse crystal packing motifs and void environments characteristic of hydrate structures. Overall, we show that our mapping approach introduces an advance in the efficient performance of hydrate CSP through generation of stable hydrate stoichiometries at low cost and should be considered an integral component for CSP workflows.


Assuntos
Água , Cristalização , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Água/química
3.
Proc Natl Acad Sci U S A ; 119(35): e2201871119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994649

RESUMO

The stability of widespread methane hydrates in shallow subsurface sediments of the marine continental margins is sensitive to temperature increases experienced by upper intermediate waters. Destabilization of methane hydrates and ensuing release of methane would produce climatic feedbacks amplifying and accelerating global warming. Hence, improved assessment of ongoing intermediate water warming is crucially important, especially that resulting from a weakening of Atlantic meridional overturning circulation (AMOC). Our study provides an independent paleoclimatic perspective by reconstructing the thermal structure and imprint of methane oxidation throughout a water column of 1,300 m. We studied a sediment sequence from the eastern equatorial Atlantic (Gulf of Guinea), a region containing abundant shallow subsurface methane hydrates. We focused on the early part of the penultimate interglacial and present a hitherto undocumented and remarkably large intermediate water warming of 6.8 °C in response to a brief episode of meltwater-induced, modest AMOC weakening centered at 126,000 to 125,000 y ago. The warming of intermediate waters to 14 °C significantly exceeds the stability field of methane hydrates. In conjunction with this warming, our study reveals an anomalously low δ13C spike throughout the entire water column, recorded as primary signatures in single and pooled shells of multitaxa foraminifers. This extremely negative δ13C excursion was almost certainly the result of massive destabilization of methane hydrates. This study documents and connects a sequence of climatic events and climatic feedback processes associated with and triggered by the penultimate climate warming that can serve as a paleoanalog for modern ongoing warming.


Assuntos
Aquecimento Global , Camada de Gelo , Metano , Camada de Gelo/química , Metano/química , Oxirredução , Água/química
4.
Nano Lett ; 24(32): 9816-9823, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39094116

RESUMO

Component modulation endows Mn-based electrodes with prominent energy storage properties due to their adjustable crystal structure characteristics. Herein, ZnMn2(PO4)2·nH2O (ZMP·nH2O) was obtained by a hydration reaction from ZnMn2(PO4)2 (ZMP) during an electrode-aging evolution. Benefiting from the introduction of lattice H2O molecules into the ZMP structure, the ion transmission path has been expanded along with the extended d-spacing, which will further facilitate the ZMP → ZMP·nH2O phase evolution and electrochemical reaction kinetics. Meanwhile, the hydrogen bond can be generated between H2O and O in PO43-, which strengthens the structure stability of ZMP·nH2O and lowers the conversion barrier from ZMP to ZMP·4H2O during the Zn2+ uptake/removal process. Thereof, ZMP·nH2O delivers enhanced electrochemical reaction kinetics with robust structure tolerance (106.52 mA h g-1 at 100 mA g-1 over 620 cycles). This high-energy aqueous Zn||ZMP·nH2O battery provides a facile strategy for engineering and exploration of high-performance ZIBs to realize the practical application of Mn-based cathodes.

5.
J Neurosci ; 43(4): 526-539, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36283831

RESUMO

The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.


Assuntos
Hidrato de Cloral , Canais de Cloreto , Camundongos , Animais , Masculino , Humanos , Hidrato de Cloral/farmacologia , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Prótons , Cloretos/metabolismo , Camundongos Endogâmicos C57BL
6.
BMC Plant Biol ; 24(1): 673, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004709

RESUMO

BACKGROUND: This research explores the efficacy of mutagenesis, specifically using sodium azide (SA) and hydrazine hydrate (HZ) treatments, to introduce genetic diversity and enhance traits in three wheat (Triticum aestivum L.) genotypes. The experiment entails subjecting the seeds to different doses of SA and HZ and cultivating them in the field for two consecutive generations: M1 (first generation) and M2 (second generation). We then employed selective breeding techniques with Start Codon Targeted (SCoT) markers to select traits within the wheat gene pool. Also, the correlation between SCoT markers and specific agronomic traits provides insights into the genetic mechanisms underlying mutagenesis-induced changes in wheat. RESULTS: In the study, eleven genotypes were derived from parent varieties Sids1, Sids12, and Giza 168, and eight mutant genotypes were selected from the M1 generation and further cultivated to establish the M2 generation. The results revealed that various morphological and agronomical characteristics, such as plant height, spikes per plant, spike length, spikelet per spike, grains per spikelet, and 100-grain weight, showed increases in different genotypes from M1 to M2. SCoT markers were employed to assess genetic diversity among the eleven genotypes. The bioinformatics analysis identified a correlation between SCoT markers and the transcription factors ABSCISIC ACID INSENSITIVE3 (ABI3) and VIVIPAROUS1 (VP1), crucial for plant development, growth, and stress adaptation. A comprehensive examination of genetic distance and the function identification of gene-associated SCoT markers may provide valuable insights into the mechanisms by which SA and HZ act as mutagens, enhancing wheat agronomic qualities. CONCLUSIONS: This study demonstrates the effective use of SA and HZ treatments to induce gene diversity through mutagenesis in the wheat gene pool, resulting in the enhancement of agronomic traits, as revealed by SCoT markers. The significant improvements in morphological and agronomical characteristics highlight the potential of mutagenesis techniques for crop improvement. These findings offer valuable information for breeders to develop effective breeding programs to enhance wheat quality and resilience through increased genetic diversity.


Assuntos
Variação Genética , Mutagênese , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Marcadores Genéticos , Pool Gênico , Genótipo , Melhoramento Vegetal/métodos , Códon de Iniciação/genética , Fenótipo , Genes de Plantas
7.
Small ; 20(14): e2307684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38126906

RESUMO

Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS2 nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO2 nanoparticles anchor within the WS2 nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal-nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS2 nanotubes, as demonstrated herein.

8.
Small ; 20(7): e2307849, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806752

RESUMO

Although the layered vanadium oxide-based materials have been considered to be one of the candidates for aqueous Zn-ion batteries (AZIBs), it still faces inevitable challenges of unsatisfactory capacities and sluggish kinetics because of strong electrostatic interactions between Zn-ions and structure lattice. This work addresses the strategy of pre-inserting guest materials to vanadium oxide cathode using different intercalants. To achieve this goal, the small organic dye molecules, methyl orange (MO), and methylene blue (MB) are proposed as the intercalants for vanadium oxygen hydrate (VOH). It has been demonstrated that use of these intercalants can facilitate reaction kinetics between Zn2+ and VOH, leading to an improvement of specific capacity (293 mAh g-1 at 0.3 A g-1 for MO-VOH and 311 mAh g-1 for MB-VOH) compared to VOH, a large enhancement of excellent energy density (237.1 Wh kg-1 for MO-VOH, 232.3 Wh kg-1 for MB-VOH), and a prolong lifespan operation at 3 A g-1 . The mechanism studies suggest that the weakened electrostatic interactions between the Zn-ions and V-O lattice after intercalating organic molecules contribute to boosting the electrochemical performance of AZIBs unveiled by charge density difference and binding energy.

9.
Chemistry ; : e202402197, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923156

RESUMO

Since their discovery, clathrate hydrates (CHs) have received great attention both from theoretical and experimental aspects due to their great potential for gas storage and prospective applications as icy crystal materials. However, there has been limited research on the decomposition, reduction or other reactions of gases enclosed in CHs. Thanks to their unique hydrogen bonding network and cavity structures, CHs can serve as the promising nanoreactors to achieve chemical conversions, e. g. reducing greenhouse gases. In this review-type article, we characterize the potential performance of such CHs nanoreactors by discussing their multiple functions including important roles of hydrogen bonds in CHs, e. g. the confinement effect and proton source, and then discuss the enhanced electron-binding ability of guest molecules and the structures and properties of trapped electrons in the stacked nanocages, which contribute to our understanding of chemical reactions occurring in CHs. Finally, we provide detailed analyses of representative reaction mechanisms underwent in CH nanoreactors and effective calculational and molecular dynamics simulation methods. This review-type article aims to provide a detailed summary about the functional characteristics of CHs and reactivity in CHs, which make CHs a kind of promising icy nanoreactors.

10.
Epilepsia ; 65(5): 1304-1313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469885

RESUMO

OBJECTIVE: Individuals with Dravet syndrome (DS) exhibit progressive gait disturbance. No quantitative studies have been conducted to evaluate the effectiveness of medication for gait disturbance. Therefore, the aim of this study was to evaluate the effectiveness of levodopa for pathological gait in people with DS using three-dimensional gait analysis (3DGA). METHODS: Nine individuals with DS, ages 6-20 years, participated in a crossover study of levodopa and were randomly assigned to the levodopa precedence or no levodopa precedence group. Levodopa/carbidopa hydrate was prescribed at a dose of 5 mg/kg/day (body weight <60 kg) or 300 mg/day (body weight ≥60 kg). The medication was taken for 4-6 weeks (4-week washout period). 3DGA was performed three times before the study, with and without levodopa. A mixed-effects model was used to evaluate the effectiveness of levodopa. The primary outcome was the change in the Gait Deviation Index (GDI). In addition, spatiotemporal gait parameters, 6-minute walking distance (6MD), and balance were evaluated. The correlation between the effectiveness of levodopa and age or gait performance before starting levodopa was analyzed. RESULTS: Levodopa improved the GDI by 4.2 points, (p = .029), 6MD by 52 m (p = .002), and balance test result by 4.1 mm (p = .011) in participants with DS. No severe adverse events were observed, with the exception of one participant, who exhibited fever and consequently stopped taking levodopa. Levodopa was more effective in younger participants with a higher baseline gait performance. SIGNIFICANCE: Our randomized crossover trial showed that levodopa has the potential to improve gait disturbance in people with DS.


Assuntos
Estudos Cross-Over , Epilepsias Mioclônicas , Transtornos Neurológicos da Marcha , Levodopa , Humanos , Levodopa/uso terapêutico , Masculino , Feminino , Adolescente , Adulto Jovem , Criança , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Epilepsias Mioclônicas/tratamento farmacológico , Análise da Marcha , Resultado do Tratamento , Carbidopa/uso terapêutico , Marcha/efeitos dos fármacos , Combinação de Medicamentos
11.
Mol Pharm ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137015

RESUMO

Our previous work (Mol Pharm, 20 (2023) 3427) showed that crystalline excipients, specifically anhydrous dibasic calcium phosphate (DCPA), facilitated the dehydration of carbamazepine dihydrate (CBZDH) and the formation of an amorphous product phase during the mixing stage of continuous tablet manufacturing. Understanding the mechanism of this excipient-induced effect was the object of this study. Blending with DCPA for 15 min caused pronounced lattice disorder in CBZDH. This was evident from the 190% increase in the apparent lattice strain determined by the Williamson-Hall plot. The rapid dehydration was attributed to the increased reactivity of CBZDH caused by this lattice disorder. Lattice disorder in CBZDH was induced by a second method, cryomilling it with DCPA. The dehydration was accelerated in the milled sample. Annealing the cryomilled sample reversed the effect, thus confirming the effect of lattice disorder on the dehydration kinetics. The hardness of DCPA appeared to be responsible for the disordering effect. DCPA exhibited a similar effect in other hydrates, thereby revealing that the effect was not unique to CBZDH. However, its magnitude varied on a case-by-case basis. The high shear powder mixing was necessary for rapid and efficient powder mixing during continuous drug product manufacturing. The mechanical stress imposed on the CBZDH, and exacerbated by DCPA, caused this unexpected destabilization.

12.
Mol Pharm ; 21(6): 2894-2907, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38688017

RESUMO

The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.


Assuntos
Clorpropamida , Cristalização , Ligação de Hidrogênio , Sais , Solubilidade , Cristalização/métodos , Sais/química , Clorpropamida/química , Química Farmacêutica/métodos , Excipientes/química , Composição de Medicamentos/métodos , Animais , Ratos , Disponibilidade Biológica
13.
J Microsc ; 294(2): 146-154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409792

RESUMO

To accurately simulate the hydration process of cementitious materials, understanding the growth rate of C-S-H layers around clinker grains is crucial. Nonetheless, the thickness of the hydrate layer shows substantial variation around individual grains, depending on their surrounding. Consequently, it is not feasible to measure hydrate layers manually in a reliable and reproducible manner. To address this challenge, a software has been developed to statistically determine the C-S-H thickness, requiring minimal manual interventions for thresholding and for setting limits like particle size or circularity. This study presents a tool, which automatically identifies suitable clinker grains and and perform statistical measurements of their hydrate layer up to a specimen age of 28 days. The findings reveal a significant increase in the C-S-H layer, starting from 0.45  µ m $\umu {\rm {m}}$ after 1 day and reaching 3.04  µ m $\umu {\rm {m}}$ after 28 days. However, for older specimens, the measurement of the C-S-H layer was not feasible due to limited pore space and clinker grains.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38634834

RESUMO

A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04T, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04T were rod-shaped, 1.4-2.9 µm long by 0.5-0.6 µm wide, and occurred singly. Strain CWC-04Tutilized formate, H2/CO2, 2-propanol/CO2 or 2-butanol/CO2 as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04T was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04T is affiliated with the genus Methanocella. The 16S rRNA gene sequences similarities within strains Methanocella arvoryzae MRE50T, Methanocella paludicola SANAET and Methanocella conradii HZ254T were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04T culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04T harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04T represents a novel species of a novel genus in the family Methanocellaceae, for which the name Methanooceanicella nereidis gen. nov., sp. nov. is proposed. The type strain is CWC-04T (=BCRC AR10050T=NBRC 113165T).


Assuntos
Dióxido de Carbono , Euryarchaeota , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Taiwan , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Metano
15.
Artigo em Inglês | MEDLINE | ID: mdl-39083039

RESUMO

Taiwan is situated in the subtropical region and its geographical location and topographical features contribute to a rich ecological diversity and scenic landscapes. We investigated the diversity of methanogens in different environments of Taiwan using a culture-dependent method. This report presents the characterization and taxonomy of six hydrogenotrophic methanogens obtained from cold seep sediments (strain FWC-SCC1T and FWC-SCC3T), marine sediments (strain CWC-02T and YWC-01T), estuarine sediments (strain Afa-1T), and a hot spring well (strain Wushi-C6T) in Taiwan. The proposed names of the six novel species are Methanoculleus frigidifontis (type strain FWC-SCC1T=BCRC AR10056T=NBRC 113993T), Methanoculleus oceani (CWC-02T=BCRC AR10055T=NBRC 113992T), Methanoculleus methanifontis (FWC-SCC3T=BCRC AR10057T=NBRC 113994T), Methanoculleus nereidis (YWC-01T=BCRC AR10060T=NBRC 114597T), Methanoculleus formosensis (Afa-1T=BCRC AR10054T=NBRC 113995T), and Methanoculleus caldifontis (Wushi-06T=BCRC AR10059T= NBRC 114596T).


Assuntos
DNA Arqueal , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Taiwan , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , DNA Arqueal/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/classificação , Methanomicrobiaceae/isolamento & purificação , Composição de Bases , Fontes Termais/microbiologia
16.
Pharm Res ; 41(3): 595-607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383934

RESUMO

PURPOSE: Wet granulation (WG) is one of the most versatile processes to improve blend properties for processing. However, due to its need for moisture and heat, it is often considered not amenable to active pharmaceutical ingredients (APIs) prone to forming hydrates. Despite this claim, little literature exists evaluating the extent to which polymorphic form conversions occur for such API when processed with WG. This work sets out to explore two common WG methods, high-shear (HSG) and fluid-bed (FBG), and two drying processes, tray-drying (TD) and fluid-bed drying (FBD), and evaluate the risk they pose to hydrate form conversion. METHODS: The progression of anhydrous to hydrate form conversion of two model compounds with vastly different solubilities, fexofenadine hydrochloride and carbamazepine, was monitored throughout the various processes using powder X-ray diffraction. The resultant granules were characterized using thermogravimetric analysis, differential scanning calorimetry, BET adsorption, and sieve analysis. RESULTS: FBG and FBD processing resulted in the preservation of the original form of both APIs, while HSG+TD resulted in the complete conversion of the API. The FBD of fexofenadine and carbamazepine granules prepared with HSG resulted in partial and complete re-conversion back to the original anhydrous forms, respectively. CONCLUSION: The drying process is a critical factor in anhydrous form conservation. FBG and FBD yielded better preservation of the initial anhydrous forms. HSG could be an acceptable granulation method for API susceptible to hydrate formation if the API solubility is low. Selecting an FBG+FBD process minimizes API hydrate formation and preserves the original anhydrous form.


Assuntos
Química Farmacêutica , Temperatura Alta , Química Farmacêutica/métodos , Difração de Raios X , Dessecação , Solubilidade , Carbamazepina
17.
Environ Sci Technol ; 58(14): 6170-6180, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38501927

RESUMO

As human society has advanced, nuclear energy has provided energy security while also offering low carbon emissions and reduced dependence on fossil fuels, whereas nuclear power plants have produced large amounts of radioactive wastewater, which threatens human health and the sustainability of water resources. Here, we demonstrate a hydrate-based desalination (HBD) technology that uses methane as a hydrate former for freshwater recovery and for the removal of radioactive chemicals from wastewater, specifically from Cs- and Sr-containing wastewater. The complete exclusion of radioactive ions from solid methane hydrates was confirmed by a close examination using phase equilibria, spectroscopic investigations, thermal analyses, and theoretical calculations, enabling simultaneous freshwater recovery and the removal of radioactive chemicals from wastewater by the methane hydrate formation process described in this study. More importantly, the proposed HBD technology is applicable to radioactive wastewater containing Cs+ and Sr2+ across a broad concentration range of low percentages to hundreds of parts per million (ppm) and even subppm levels, with high removal efficiency of radioactive chemicals. This study highlights the potential of environmentally sustainable technologies to address the challenges posed by radioactive wastewater generated by nuclear technology, providing new insights for future research and development efforts.


Assuntos
Césio , Águas Residuárias , Humanos , Estrôncio , Água Doce , Metano/química
18.
Environ Sci Technol ; 58(11): 4979-4988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445630

RESUMO

Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Anaerobiose , Metano , RNA Ribossômico 16S/genética , Oxirredução , Filogenia
19.
Mol Biol Rep ; 51(1): 103, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219219

RESUMO

BACKGROUND: Heat stress is known to adversely affect testicular activity and manifest the pathogenesis of spermatogenesis. Morin hydrate is a plant-derived compound, which contains a wide range of biological activities. Thus, it is hypothesized that morin hydrate might have an ameliorative effect on heat-induced testicular impairment. There has not been any research on the impact of morin hydrate on heat-induced testicular damage. METHODS: The experimental mice were divided into four groups, groups1 as the normal control group (CN), and the second which underwent heat stress (HS) by immersing the lower body for 15 min in a thermostatically controlled water bath kept at 43 °C (HS), and third and fourth heat-stressed followed by two different dosages of morin hydrate 10 mg/kg (HSM10) and 100 mg/kg (HSM100) for 14 days. RESULTS: Morin hydrate treatment at 10 mg/kg improved, circulating testosterone levels (increases 3ßHSD), and oxidative stress along with improvement in the testis and caput and corpus epididymis histoarchitecture, however, both doses of morin hydrate improved sperm parameters. Morin hydrate treatment significantly increases germ cell proliferation, (GCNA, BrdU staining), expression of Bcl2 and decreases expression of active caspase 3. Heat stress also decreased the expression of AR, ER- α, and ER-ß, and Morin hydrate treatment increased the expression of these markers in the 10 mg/kg treatment group. CONCLUSION: Morin hydrate ameliorates heat-induced testicular impairment modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which requires further investigations.


Assuntos
Flavonas , Sêmen , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Espermatozoides/metabolismo , Espermatogênese , Estresse Oxidativo , Testosterona/metabolismo
20.
Bioorg Chem ; 151: 107672, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39068718

RESUMO

Bilastine (BIL) is a novel 2nd generation antihistamine medication is used to treat symptoms of chronic urticaria and allergic rhinitis. However, its poor solubility limits its therapeutic efficacy. In order to enhance the physicochemical characteristics of BIL, various molecular adducts of BIL (Salt, hydrate and co-crystal) were discovered in this study using two distinct salt-formers: Terephthalic acid (TA), 2,4-Dihydroxybenzoic acid (2,4-DHBA), and three nutraceuticals (Vanillic Acid (VA), Hydroquinone (HQN) and Hippuric acid (HA)). Various analytical methods were used to examine the synthesised adducts, including Powder X-Ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), and thermal analysis (Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC)). Single-crystal X-ray diffraction (SCXRD) studies avowed that the architectures of the molecular adducts are maintained in the solid state by an array of strong (N+H⋯O-, NH⋯O, OH⋯O) and weak (CH⋯O) hydrogen bonds. Additionally, a solubility test was performed to establish the in vitro release characteristics of newly synthesised BIL adducts and it observed that most of the molecular adducts exhibit higher rates of dissolution in comparison to pure BIL; in particular, BIL.TA.HYD showed the highest solubility and the fastest rate of dissolution. Moreover, experiments on flux permeability and diffusion demonstrated that the BIL.TA.HYD and BIL.VA salts had strong permeability and a high diffusion rate. In addition, the synthesized adduct's stability was assessed at 25 °C and 90 % ± 5 % relative humidity, and it was found that all the molecular salts were stable and did not undergo any phase changes or dissociation. The foregoing result leads us to believe that the newly synthesized molecular adducts' increased permeability and solubility will be advantageous for the creation of novel BIL formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA