Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Biol Chem ; 299(11): 105266, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734555

RESUMO

With antimicrobial resistance (AMR) remaining a persistent and growing threat to human health worldwide, membrane-active peptides are gaining traction as an alternative strategy to overcome the issue. Membrane-embedded multi-drug resistant (MDR) efflux pumps are a prime target for membrane-active peptides, as they are a well-established contributor to clinically relevant AMR infections. Here, we describe a series of transmembrane peptides (TMs) to target the oligomerization motif of the AcrB component of the AcrAB-TolC MDR efflux pump from Escherichia coli. These peptides contain an N-terminal acetyl-A-(Sar)3 (sarcosine; N-methylglycine) tag and a C-terminal lysine tag-a design strategy our lab has utilized to improve the solubility and specificity of targeting for TMs previously. While these peptides have proven useful in preventing AcrB-mediated substrate efflux, the mechanisms by which these peptides associate with and penetrate the bacterial membrane remained unknown. In this study, we have shown peptide hydrophobic moment (µH)-the measure of concentrated hydrophobicity on one face of a lipopathic α-helix-drives bacterial membrane permeabilization and depolarization, likely through lateral-phase separation of negatively-charged POPG lipids and the disruption of lipid packing. Our results show peptide µH is an important consideration when designing membrane-active peptides and may be the determining factor in whether a TM will function in a permeabilizing or non-permeabilizing manner when embedded in the bacterial membrane.


Assuntos
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo , Peptídeos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
2.
J Membr Biol ; 257(3-4): 165-205, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38990274

RESUMO

Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.


Assuntos
Peptídeos Antimicrobianos , Venenos de Escorpião , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Animais , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Interações Hidrofóbicas e Hidrofílicas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Termodinâmica
3.
J Pept Sci ; : e3628, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950972

RESUMO

Cell-penetrating peptides (CPPs) with better biomolecule delivery properties will expand their clinical applications. Using the MLCPP2.0 machine algorithm, we screened multiple candidate sequences with potential cellular uptake ability from the nuclear localization signal/nuclear export signal database and verified them through cell-penetrating fluorescent tracing experiments. A peptide (NCR) derived from the Rev protein of the caprine arthritis-encephalitis virus exhibited efficient cell-penetrating activity, delivering over four times more EGFP than the classical CPP TAT, allowing it to accumulate in lysosomes. Structural and property analysis revealed that a high hydrophobic moment and an appropriate hydrophobic region contribute to the high delivery activity of NCR. Trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, could improve its anti-tumor activity by enhancing targeted delivery efficiency and increasing lysosomal drug delivery. This study designed a new NCR vector to non-covalently bind T-DM1 by fusing domain Z, which can specifically bind to the Fc region of immunoglobulin G and effectively deliver T-DM1 to lysosomes. MTT results showed that the domain Z-NCR vector significantly enhanced the cytotoxicity of T-DM1 against HER2-positive tumor cells while maintaining drug specificity. Our results make a useful attempt to explore the potential application of CPP as a lysosome-targeted delivery tool.

4.
J Membr Biol ; 256(4-6): 317-330, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37097306

RESUMO

Using a flexibility prediction algorithm and in silico structural modeling, we have calculated the intrinsic flexibility of several magainin derivatives. In the case of magainin-2 (Mag-2) and magainin H2 (MAG-H2) we have found that MAG-2 is more flexible than its hydrophobic analog, Mag-H2. This affects the degree of bending of both peptides, with a kink around two central residues (R10, R11), whereas, in Mag-H2, W10 stiffens the peptide. Moreover, this increases the hydrophobic moment of Mag-H2, which could explain its propensity to form pores in POPC model membranes, which exhibit near-to-zero spontaneous curvatures. Likewise, the protective effect described in DOPC membranes for this peptide regarding its facilitation in pore formation would be related to the propensity of this lipid to form membranes with negative spontaneous curvature. The flexibility of another magainin analog (MSI-78) is even greater than that of Mag-2. This facilitates the peptide to present a kind of hinge around the central F12 as well as a C-terminal end prone to be disordered. Such characteristics are key to understanding the broad-spectrum antimicrobial actions exhibited by this peptide. These data reinforce the hypothesis on the determinant role of spontaneous membrane curvature, intrinsic peptide flexibility, and specific hydrophobic moment in assessing the bioactivity of membrane-active antimicrobial peptides.


Assuntos
Bicamadas Lipídicas , Proteínas de Xenopus , Magaininas/química , Proteínas de Xenopus/análise , Proteínas de Xenopus/química , Membranas/química , Bicamadas Lipídicas/química
5.
J Mol Struct ; 1272: 134160, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36128074

RESUMO

The CD147 / Cyp A interaction is a critical pathway in cancer types and an essential factor in entering the COVID-19 virus into the host cell. Melittin acts as an inhibitory peptide in cancer types by blocking the CD147/ Cyp A interaction. The clinical application of Melittin is limited due to weak penetration into cancer cells. TAT is an arginine-rich peptide with high penetration ability into cells widely used in drug delivery systems. This study aimed to design a hybrid peptide derived from Melittin and TAT to inhibit CD147 /Cyp A interaction. An amino acid region with high anti-cancer activity in Melittin was selected based on the physicochemical properties. Based on the results, a truncated Melittin peptide with 15 amino acids by the GGGS linker was fused to a TAT peptide (nine amino acids) to increase the penetration rate into the cell. A new hybrid peptide analog(TM) was selected by replacing the glycine with serine based on random point mutation. Docking results indicated that the TM peptide acts as an inhibitory peptide with high binding energy when interacting with CD147 and the CypA proteins. RMSD and RMSF results confirmed the high stability of the TM peptide in interaction with CD147. Also, the coarse-grained simulation showed the penetration potential of TM peptide into the DOPS-DOPC model membrane. Our findings indicated that the designed multifunctional peptide could be an attractive therapeutic candidate to halter tumor types and COVID-19 infection.

6.
J Biol Chem ; 294(19): 7615-7631, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894414

RESUMO

Mycobacteriophages express various peptides/proteins to infect Mycobacterium tuberculosis (M. tb). Particular attention has been paid to mycobacteriophage-derived endolysin proteins. We herein characterized a small mycobacteriophage-derived peptide designated AK15 with potent anti-M. tb activity. AK15 adopted cationic amphiphilic α-helical structure, and on the basis of this structure, we designed six isomers with increased hydrophobic moment by rearranging amino acid residues of the helix. We found that one of these isomers, AK15-6, exhibits enhanced anti-mycobacterial efficiency. Both AK15 and AK15-6 directly inhibited M. tb by trehalose 6,6'-dimycolate (TDM) binding and membrane disruption. They both exhibited bactericidal activity, cell selectivity, and synergistic effects with rifampicin, and neither induced drug resistance to M. tb They efficiently attenuated mycobacterial load in the lungs of M. tb-infected mice. We observed that lysine, arginine, tryptophan, and an α-helix are key structural requirements for their direct anti-mycobacterial action. Of note, they also exhibited immunomodulatory effects, including inhibition of proinflammatory response in TDM-stimulated or M. tb-infected murine bone marrow-derived macrophages (BMDMs) and M.tb-infected mice and induction of only a modest level of cytokine (tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6)) production in murine BMDMs and a T-cell cytokine (interferin-γ (IFN-γ) and TNF-α) response in murine lung and spleen. In summary, characterization of a small mycobacteriophage-derived peptide and its improved isomer revealed that both efficiently restrain M. tb infection via dual mycobactericidal-immunoregulatory activities. Our work provides clues for identifying small mycobacteriophage-derived anti-mycobacterial peptides and improving those that have cationic amphiphilic α-helices.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Micobacteriófagos/química , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/tratamento farmacológico , Proteínas Virais/farmacologia , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/agonistas , Peptídeos Catiônicos Antimicrobianos/química , Sinergismo Farmacológico , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/virologia , Rifampina/agonistas , Rifampina/farmacologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Proteínas Virais/química
7.
Biochem Biophys Res Commun ; 517(3): 507-512, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31375212

RESUMO

Molecules interfering with lipid bilayer function exhibit strong antiviral activity against a broad range of enveloped viruses, with a lower risk of resistance development than that for viral protein-targeting drugs. Amphipathic peptides are rich sources of such membrane-interacting antivirals. Here, we report that influenza viruses were effectively inactivated by M2 AH, an amphipathic peptide derived from the M2 protein of the influenza virus. Although overall hydrophobicity () of M2 AH was not related to antiviral activity, modification of the hydrophobic moment (<µH>) of M2 AH dramatically altered the antiviral activity of this peptide. M2 MH, a derivative of M2 AH with a <µH> of 0.874, showed a half maximal inhibitory concentration (IC50) of 53.3 nM against the A/PR/8/34 strain (H1N1), which is 16-times lower than that of M2 AH. The selectivity index (IC50/CC50), where CC50 is the half maximal cytotoxic concentration, was 360 for M2 MH and 81 for M2 AH. Dynamic light scattering spectroscopy and electron microscopy revealed that M2 AH-derived peptides did not disrupt liposomes but altered the shape of viruses. This result suggests that the shape of virus envelope was closely related to its activity. Thus, we propose that deforming without rupturing the membranes may achieve a high selectivity index for peptide antivirals.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Animais , Antivirais/síntese química , Membrana Celular/química , Membrana Celular/virologia , Cães , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Concentração Inibidora 50 , Bicamadas Lipídicas/química , Lipossomos/química , Células Madin Darby de Rim Canino , Peptídeos/síntese química , Relação Estrutura-Atividade , Carga Viral/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1858(11): 2699-2708, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27423268

RESUMO

The emergence of antibiotic-resistant clinical isolates and the decreased rate of development of new antibiotics are a constant threat to human health. In this context, the therapeutic value of mastoparan (MP), a toxin from wasp venom, has been extensively studied. However, since MP shows significant cytotoxic activities, further optimization is needed. Here we evaluated the antimicrobial and cytolytic activities of an MP analog created by Ala-substitution in positions 5 and 8, named [I5, R8] mastoparan ([I5, R8] MP). We found that [I5, R8] MP displayed a broad-spectrum antimicrobial activity against bacteria and fungi (MIC in the range 3-25µM), without being hemolytic or cytotoxic toward HEK-293 cells. In addition, [I5, R8] MP-amide was highly potent (MIC=3µM) against antibiotic-resistant bacteria. The interaction with microbial membranes was investigated revealing that [I5, R8] MP is able to form an active amphipathic α-helix conformation and to disturb membranes causing lysis and cell death. Based on our findings, we hypothesize that [I5, R8] MP follows a mechanism of action similar to that proposed for MP, where the pore-forming activity leads to cell death. Our results indicate that hydrophobic moment modified by amino acid substitution may enhance MP selectivity.


Assuntos
Substituição de Aminoácidos , Antibacterianos/farmacologia , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/síntese química , Antibacterianos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intercelular , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Especificidade da Espécie , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Venenos de Vespas/síntese química , Venenos de Vespas/metabolismo
9.
Eur Biophys J ; 45(4): 341-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26658743

RESUMO

This article describes the formation of homodimers from their constituting monomers, based on the rules set by a simple model of electric and hydrophobic interactions. These interactions are described in terms of the electric dipole moment (D) and hydrophobic moment vectors (H) of proteins. The distribution of angles formed by the two dipole moments of monomers constituting dimers were analysed, as well as the distribution of angles formed by the two hydrophobic moments. When these distributions were fitted to Gaussian curves, it was found that for biological dimers, the D vectors tend mostly to adopt a perpendicular arrangement with respect to each other, in which the constituting dipoles have the least interaction. A minor population tends towards an antiparallel arrangement implying maximum electric attraction. Also in biological dimers, the H vectors of most monomers tend to interact in such a way that the total hydrophobic moment of the dimer increases with respect to those of the monomers. This shows that hydrophobic moments have a tendency to align. In dimers originating in the crystallisation process, the distribution of angles formed by both hydrophobic and electric dipole moments appeared rather featureless, probably because of unspecific interactions in the crystallisation processes. The model does not describe direct interactions between H and D vectors although the distribution of angles formed by both vectors in dimers was analysed. It was found that in most cases these angles tended to be either small (both moments aligned parallel to each other) or large (antiparallel disposition).


Assuntos
Eletricidade , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Proteínas/química , Estabilidade Proteica , Estrutura Quaternária de Proteína
10.
Biochim Biophys Acta Gen Subj ; 1866(3): 130070, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953809

RESUMO

BACKGROUND: Computer-aided identification and design tools are indispensable for developing antimicrobial agents for controlling antibiotic-resistant bacteria. Antimicrobial peptides (AMPs) have aroused intense interest, since they have a broad spectrum of activity, and therefore, several systems for predicting antimicrobial peptides have been developed, using scalar physicochemical properties; however, regardless of the machine learning algorithm, these systems often fail in discriminating AMPs from their shuffled versions, leading to the need for new training methods to overcome this bias. Aiming to solve this bias, here we present "Sense the Moment", a prediction system capable of discriminating AMPs and shuffled versions. METHODS: The system was trained using 776 entries: 388 from known AMPs and another 388 based on shuffled versions of known AMPs. Each entry contained the geometric average of three hydrophobic moments measured with different scales. RESULTS: The model showed good accuracy (>80%) and excellent sensitivity (>90%) for AMP prediction, exceeding deep-learning-based methods. CONCLUSION: Our results demonstrate the system's applicability, aiding in identifying and discarding non-AMPs, since the number of false negatives is lower than false positives. GENERAL SIGNIFICANCE: The application of this model in virtual screening protocols for identifying and/or creating antimicrobial agents could aid in the identification of potential drugs to control pathogenic microorganisms and in solving the antibiotic resistance crisis. AVAILABILITY: The system was implemented as a web application, available at .


Assuntos
Peptídeos Catiônicos Antimicrobianos
11.
Curr Opin Struct Biol ; 77: 102467, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306674

RESUMO

Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.


Assuntos
Antivirais , Proteínas de Ligação a RNA , Antivirais/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Interferons/metabolismo
12.
Int J Mol Sci ; 12(12): 8449-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272083

RESUMO

In this paper, the second-order hydrophobic moment for fifteen globular proteins in 150 nonhomologous protein chains was performed in a comparative study involving two sets of hydrophobicity: one selected from the consensus scale and the other derived from the CHARMM partial atomic charges. These proteins were divided into three groups, based on their number of residues (N) and the asphericity (δ). Proteins in Group I were spherical and those in Groups II and III were prolate. The size of the proteins is represented by the mean radius of gyration (R(g) ), which follows the Flory scaling law, R(g) ∝ N(ν). The mean value of v was 0.35, which is similar to a polymer chain in a poor solvent. The spatial distributions of the second-order moment for each of the proteins, obtained from the two sets of hydrophobicity, were compared using the Pearson correlation coefficient; the results reveal that there is a strong correlation between the two data sets for each protein structure when the CHARMM partial atomic charges, |q(i)| ≥ 0.3, assigned for polar atoms, are used. The locations at which these distributions vanish and approach a negative value are at approximately 50% of the percentage of solvent accessibility, indicating that there is a transition point from hydrophobic interior to hydrophilic exterior in the proteins. This may suggest that there is a position for the proteins to determine the residues at exposed sites beyond this range.


Assuntos
Biologia Computacional/métodos , Dobramento de Proteína , Proteínas/química , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Eletricidade Estática
13.
Int J Mol Sci ; 12(9): 5577-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016610

RESUMO

The Eisenberg plot or hydrophobic moment plot methodology is one of the most frequently used methods of bioinformatics. Bioinformatics is more and more recognized as a helpful tool in Life Sciences in general, and recent developments in approaches recognizing lipid binding regions in proteins are promising in this respect. In this study a bioinformatics approach specialized in identifying lipid binding helical regions in proteins was used to obtain an Eisenberg plot. The validity of the Heliquest generated hydrophobic moment plot was checked and exemplified. This study indicates that the Eisenberg plot methodology can be transferred to another hydrophobicity scale and renders a user-friendly approach which can be utilized in routine checks in protein-lipid interaction and in protein and peptide lipid binding characterization studies. A combined approach seems to be advantageous and results in a powerful tool in the search of helical lipid-binding regions in proteins and peptides. The strength and limitations of the Eisenberg plot approach itself are discussed as well. The presented approach not only leads to a better understanding of the nature of the protein-lipid interactions but also provides a user-friendly tool for the search of lipid-binding regions in proteins and peptides.


Assuntos
Biologia Computacional/métodos , Estrutura Secundária de Proteína , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Proteínas/química , Reprodutibilidade dos Testes
14.
J Biotechnol ; 334: 11-25, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34015375

RESUMO

Their surface activity enables proteins to form and stabilize foam, which can be used for in situ product separation or foam fractionation. Thus, it would be highly desirable to predict the surface activity of proteins based on their molecular properties like hydrophobicity, amphilicity, or structure on primary, secondary, and tertiary level. Ionic strength and pH were adjusted to gain maximum surface activity. The surface activity decreased in the order α lactalbumin > ß­lactoglobulin > trypsinogen > papain. For the theoretical analysis, the database was extended by including 2 hydrophobins into the investigation, since they are known to exhibit an outstanding surface activity. No relation to the macroscopic behavior was found considering the hydrophobicity. I.e., the non-hydrophobins did not differ significantly from each other, and from the hydrophobins, one was significantly hydrophobic, and the other was significantly hydrophilic. Also, no relations were found considering the amphilicity of the secondary structure elements. However, taking into account the tertiary protein structure, it was found that for most of the proteins investigated, the presence of non-buried amphiphilic secondary structure elements in combination with a certain amount of flexibility correlates with the surface activity.


Assuntos
Proteínas Fúngicas , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
FEBS Lett ; 594(6): 1062-1080, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794050

RESUMO

α-Helical membrane-active antimicrobial peptides (AMPs) are known to act via a range of mechanisms, including the formation of barrel-stave and toroidal pores and the micellisation of the membrane (carpet mechanism). Different mechanisms imply that the peptides adopt different 3D structures when bound at the water-membrane interface, a highly amphipathic environment. Here, an evolutionary algorithm is used to predict the 3D structure of a range of α-helical membrane-active AMPs at the water-membrane interface by optimising amphipathicity. This amphipathic structure prediction (ASP) is capable of distinguishing between curved and linear peptides solved experimentally, potentially allowing the activity and mechanism of action of different membrane-active AMPs to be predicted. The ASP algorithm is accessible via a web interface at http://atb.uq.edu.au/asp/.


Assuntos
Algoritmos , Membranas Artificiais , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Conformação Proteica em alfa-Hélice , Água/química
16.
ACS Infect Dis ; 6(9): 2369-2385, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786286

RESUMO

Cytotoxic frog antimicrobial peptide Temporin L (TempL) is an attractive molecule for the design of lead antimicrobial agents due to its short size and versatile biological activities. However, noncytotoxic TempL variants with desirable biological activities have rarely been reported. TempL analogue Q3K,TempL is water-soluble and possesses a significant antiendotoxin property along with comparable cytotoxicity to TempL. A phenylalanine residue, located at the hydrophobic face of Q3K,TempL and the "d" position of its phenylalanine zipper sequence, was replaced with a cationic lysine residue. This analogue, Q3K,F8K,TempL, showed reduced hydrophobic moment and was noncytotoxic with lower antimicrobial activity. Interestingly, swapping between tryptophan at the fourth and serine at the sixth positions turned Q3K,F8K,TempL totally amphipathic as reflected by its helical wheel projection with clusters of hydrophobic and hydrophilic residues and the highest hydrophobic moment among these peptides. Surprisingly, this analogue, SW,Q3K,F8K,TempL, was as noncytotoxic as Q3K,F8K,TempL but showed augmented antimicrobial and antiendotoxin properties, comparable to that of TempL and Q3K,TempL. SW,Q3K,F8K,TempL exhibited appreciable survival of mice against P. aeruginosa infection and a lipopolysaccharide (LPS) challenge. Unlike TempL and Q3K,TempL, SW,Q3K,F8K,TempL adopted an unordered secondary structure in bacterial membrane mimetic lipid vesicles and did not permeabilize them or depolarize the bacterial membrane. Overall, the results demonstrate the design of a nontoxic TempL analogue that possesses clusters of hydrophobic and hydrophilic residues with impaired secondary structure and shows a nonmembrane-lytic mechanism and in vivo antiendotoxin and antimicrobial activities. This paradigm of design of antimicrobial peptide with clusters of hydrophobic and hydrophilic residues and high hydrophobic moment but low secondary structure could be attempted further.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Camundongos , Estrutura Secundária de Proteína
17.
Methods Mol Biol ; 1548: 23-34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28013494

RESUMO

Methods are described for the design of amphipathic helical AMPs, to improve potency and/or increase selectivity with respect to host cells. One method is based on the statistical analysis of known helical AMPs to derive a sequence template and ranges of charge, hydrophobicity, and amphipathicity (hydrophobic moment) values that lead to broad-spectrum activity, but leaves optimization for selectivity to subsequent rounds of SAR determinations. A second method uses a small database of anuran AMPs with known potency (MIC values vs. E. coli) and selectivity (HC50 values vs. human erythrocytes), as well as the concept of longitudinal moment, to suggest sequences or sequence variations that can improve selectivity. These methods can assist in the initial design of novel AMPs with useful properties in vitro, but further development requires knowledge-based decisions and a sound prior understanding of how structural and physical attributes of this class of peptides affect their mechanism of action against bacteria and host cells.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Biologia Computacional/métodos , Desenho de Fármacos , Estrutura Secundária de Proteína , Algoritmos , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Relação Estrutura-Atividade
18.
3 Biotech ; 5(6): 1041-1051, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28324412

RESUMO

Over the last two decades, an impressive progress has been made in the identification of novel factors in the translocation machineries of the mitochondrial protein import and their possible roles. The role of lipids and possible protein-lipids interactions remains a relatively unexplored territory. Investigating the role of potential lipid-binding regions in the sub-units of the mitochondrial motor might help to shed some more light in our understanding of protein-lipid interactions mechanistically. Bioinformatics results seem to indicate multiple potential lipid-binding regions in each of the sub-units. The subsequent characterization of some of those regions in silico provides insight into the mechanistic functioning of this intriguing and essential part of the protein translocation machinery. Details about the way the regions interact with phospholipids were found by the use of Monte Carlo simulations. For example, Pam18 contains one possible transmembrane region and two tilted surface bound conformations upon interaction with phospholipids. The results demonstrate that the presented bioinformatics approach might be useful in an attempt to expand the knowledge of the possible role of protein-lipid interactions in the mitochondrial protein translocation process.

19.
ScienceOpen Res ; 20142014.
Artigo em Inglês | MEDLINE | ID: mdl-26258004

RESUMO

Rat CD39, a membrane-bound ectonucleoside triphosphate diphosphohydrolase that hydrolyzes extracellular nucleoside tri- and diphosphates, is anchored to the membrane by two transmembrane domains at the two ends of the molecule. The transmembrane domains are important for enzymatic activity, as mutants lacking one or both of these domains have a fraction of the enzymatic activity of the wild-type CD39. We investigated the interactions between the transmembrane domains by using a strain of yeast that requires surface expression of CD39 for growth. Random mutagenesis of selected amino acid residues in the N-terminal transmembrane domain revealed that the presence of charged amino acids at these positions prevents expression of functional protein. Rescue of the growth of these mutants by complementary mutations on selected residues of the C-terminal transmembrane domain indicates that there is contact between particular faces of the transmembrane domains.

20.
FEBS Lett ; 587(18): 2980-3, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23851009

RESUMO

An assignment of the helical hairpin of the influenza fusion peptide has been made based on the hydrophobic moments, represented in a form of two-dimensional map. Such assignment holds for all serotypes, even for the cases of mutations altering the amino acid character. Similar results are obtained for the experimentally developed hydrophobicity scales, whose values reflect the transfer energies between aqueous and membrane environments. A distinct, however still structure-related hydrophobic map corresponds to a helical and contiguous HIV gp41 fp. The method may be used as a simple tool for sequence-based prediction of structures adopted by viral fusion peptides.


Assuntos
Proteína gp41 do Envelope de HIV/química , Hemaglutininas Virais/química , Mapeamento de Peptídeos , Proteínas Virais de Fusão/química , Motivos de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA