Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(5): 3234-3244, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35176853

RESUMO

The application of sulfate radical advanced oxidation for organic pollutant removal has been hindered by some shortages such as the recycling difficulty of a powered catalyst, the low utilization efficiency of oxidants, and the secondary pollution (including soil acidification) after reaction. Herein, we fabricate a selective separation catalysis membrane (SSCM) for a highly efficient and environment-friendly persulfate-based advanced oxidation process. The SSCM comprises a top polydimethylsiloxane layer which is selectively penetrable to hydrophobic organic pollutants, followed by a catalyst layer with a magnetic nitrogen-doped porous carbon material, targeting the advanced oxidation of the selected pollutants. Compared with the catalyst in powder form, such SSCM devices significantly reduced the dosage of peroxymonosulfate by more than 40% and the catalyst dosage by 97.8% to achieve 80% removal of phenol with the coexistence of 20 mg L-1 humic acid (HA). The SSCM can extract target pollutants while rejecting HA more than 91.43% for 100 h. The pH value in the receiving solution demonstrated a significant reduction from 7.01 to 3.00. In comparison, the pH value in the feed solution varied from 6.05 to a steady 4.59. The results can be ascribed to the specific functionality for the catalyst anchored, natural organic matter isolation, and reaction compartmentation provided by SSCMs. The developed SSCM technology is beneficial for catalysts reused in remediation practices, saving oxidant dosage, and avoiding acidification of soil and water, thus having tremendous application potential.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Catálise , Descontaminação , Substâncias Húmicas , Oxidantes , Oxirredução , Solo , Água , Poluentes Químicos da Água/química
2.
Chemosphere ; 300: 134509, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35395267

RESUMO

Hydrophobic organic pollutants (HOCs) in the complex groundwater and soil pose serious technical challenges for sustainable remediation. Herein, an asymmetric membrane (PCAM), inspired by the plant cuticle, was comprised of a top polydimethylsiloxane layer being selectively penetrable to HOCs from complex solution with humic acid, followed by transfer and catalyst layers with biochar pyrolyzed by 300 °C (BC300) and 700 °C (BC700). The PCAM triggered the advanced oxidation of the coming pollutant. The graphitized biochar layer of the PCAM acted as catalysts that induced HOC removal through a non-radical oxidation pathway. Compared to one type biochar membrane, the sequential multi-biochar composite membrane had a faster removal efficiency. The greater uptake and transport performance of multi-biochar composite membrane could be due to the larger pore size and distribution properties of PCAM physicochemical properties and oxidative degradation of peroxymonosulfate. The developed PCAM technology benefits from selective adsorption and catalytic oxidation and has the potential to be applied in complex environmental restoration.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes do Solo , Adsorção , Carvão Vegetal/química
3.
J Hazard Mater ; 404(Pt A): 124137, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049627

RESUMO

A lot of soil (particularly, former industrial and military sites) has been contaminated by various highly toxic contaminants such as petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) or chlorinated solvents. Soil remediation is now required for their promotion into new industrial or real estate activities. Therefore, the soil washing (SW) process enhanced by the use of extracting agents (EAs) such as surfactants or cyclodextrins (CDs) has been developed for the removal of hydrophobic organic compounds (HOCs) from contaminated soils. The use of extracting agents allows improving the transfer of HOCs from the soil-sorbed fraction to the washing solution. However, using large amount of extracting agents is also a critical drawback for cost-effectiveness of the SW process. The aim of this review is to examine how extracting agents might be recovered from SW solutions for reuse. Various separation processes are able to recover large amounts of extracting agents according to the physicochemical characteristics of target pollutants and extracting agents. However, an additional treatment step is required for the degradation of recovered pollutants. SW solutions may also undergo degradation processes such as advanced oxidation processes (AOPs) with in situ production of oxidants. Partial recovery of extracting agents can be achieved according to operating conditions and reaction kinetics between organic compounds and oxidant species. The suitability of each process is discussed according to the various physicochemical characteristics of SW solutions. A particular attention is paid to the anodic oxidation process, which allows either a selective degradation of the target pollutants or a complete removal of the organic load depending on the operating conditions.

4.
J Environ Sci (China) ; 147: 282-293, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003047

RESUMO

There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , China , Medição de Risco , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Solo/química , Interações Hidrofóbicas e Hidrofílicas , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA