Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 389-400, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117934

RESUMO

Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.


Assuntos
Células Endoteliais , Enxerto Vascular , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Plasma , Prótese Vascular , Etanol
2.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139920

RESUMO

Available literature on the aging of plasma-activated polyethylene due to hydrophobic recovery has been reviewed and critically assessed. A common method for the evaluation of hydrophobic recovery is the determination of the static water contact angle, while the surface free energy does not reveal significant correlations. Surface-sensitive methods for the characterization of chemical composition and structure have limited applicability in studying the aging phenomenon. Aging is driven by thermodynamics, so it is observed even upon storage in a vacuum, and hydrophobic recovery increases with increasing temperature. Storage of plasma-activated polyethylene in the air at ambient conditions follows almost logarithmic behavior during the period studied by most authors; i.e., up to one month. The influence of the storage medium is somehow controversial because some authors reported aging suppression by storing in polar liquids, but others reported the loss of hydrophilicity even after a brief immersion into distilled water. Methods for suppressing aging by hydrophobic recovery include plasma treatment at elevated temperature followed by brief treatment at room temperature and application of energetic ions and photons in the vacuum ultraviolet range. Storing at low temperatures is a trivial alternative, but not very practical. The aging of plasma-activated polyethylene suppresses the adhesion of many coatings, but the correlation between the surface free energy and the adhesion force has yet to be addressed adequately.

3.
Polymers (Basel) ; 14(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746070

RESUMO

Oxygen plasma is widely used for enhancing the wettability of numerous polymers, including polyethylene terephthalate (PET). The treatment with plasma containing oxygen will cause surface functionalization with polar functional groups, which will, in turn, improve the wettability. However, the exact mechanisms leading to the hydrophilic or even super-hydrophilic surface finish are still insufficiently explored. The wettability obtained by plasma treatment is not permanent, since the hydrophobic recovery is usually reported. The mechanisms of hydrophobic recovery are reviewed and explained. Methods for suppressing this effect are disclosed and explained. The recommended treatment which assures stable hydrophilicity of PET samples is the treatment with energetic ions and/or vacuum ultraviolet radiation (VUV). The influence of various plasma species on the formation of the highly hydrophilic surface finish and stability of adequate wettability of PET materials is discussed.

4.
Materials (Basel) ; 15(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35329765

RESUMO

Polydimethylsiloxane (PDMS), a silicone elastomer, is increasingly being used in health and biomedical fields due to its excellent optical and mechanical properties. Its biocompatibility and resistance to biodegradation led to various applications (e.g., lung on a chip replicating blood flow, medical interventions, and diagnostics). The many advantages of PDMS are, however, partially offset by its inherent hydrophobicity, which makes it unsuitable for applications needing wetting, thus requiring the hydrophilization of its surface by exposure to UV or O2 plasma. Yet, the elastomeric state of PDMS translates in a slow, hours to days, process of reducing its surface hydrophilicity-a process denominated as hydrophobic recovery. Using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM), the present study details the dynamics of hydrophobic recovery of PDMS, on flat bare surfaces and on surfaces embedded with hydrophilic beads. It was found that a thin, stiff, hydrophilic, silica film formed on top of the PDMS material, following its hydrophilization by UV radiation. The hydrophobic recovery of bare PDMS material is the result of an overlap of various nano-mechanical, and diffusional processes, each with its own dynamics rate, which were analyzed in parallel. The hydrophobic recovery presents a hysteresis, with surface hydrophobicity recovering only partially due to a thin, but resilient top silica layer. The monitoring of hydrophobic recovery of PDMS embedded with hydrophilic beads revealed that this is delayed, and then totally stalled in the few-micrometer vicinity of the embedded hydrophilic beads. This region where the hydrophobic recovery stalls can be used as a good approximation of the depth of the resilient, moderately hydrophilic top layer on the PDMS material. The complex processes of hydrophilization and subsequent hydrophobic recovery impact the design, fabrication, and operation of PDMS materials and devices used for diagnostics and medical procedures. Consequently, especially considering the emergence of new surgical procedures using elastomers, the impact of hydrophobic recovery on the surface of PDMS warrants more comprehensive studies.

5.
Colloids Surf B Biointerfaces ; 205: 111900, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34102530

RESUMO

Poly(dimethylsiloxane) (PDMS) is known as one of the most established polymers for making elastomers. Therefore, it is commonly used for the fabrication of biomedical devices. Many PDMS surface modification processes have been proposed recently to increase PDMS reliability in medical fields. However, the modified surface's long-term stability is still limited. Hydrophobic recovery of PDMS is widely recognized as a factor that reduces the efficacy of PDMS surface modification. The photoreactive zwitterionic polymer effectively suppresses the hydrophobic recovery of PDMS, according to the current analysis. The photoreactive zwitterionic monomer, 2-[2-(Methacryloyloxy)ethyldimethylanmmonium] ethyl benzophenoxy phosphate (MBPP) was polymerized by conventional radical polymerization and coated on O2-plasma-treated PDMS specimens. The specimens were immersed in an aqueous solution of 2-methacryloyloxyethyl phosphorylcholine (MPC) and exposed under ultraviolet (UV) radiation for 3 h. Instead, of poly(MBPP) (PMBPP), benzophenone (BP) was also used as a conventional photoinitiator. The time-dependent change in the wettability and elemental composition of the specimen surface was monitored for nine weeks after photo-grafting of poly[2-methacryloyloxyethyl phosphorylcholine (MPC)] (PMPC). The advancing and receding contact angles (θA/θR) of the pristine PDMS specimen were 112°/71° and significantly decreased immediately after the grafting of PMPC regardless of types of photoinitiator. However, the hydrophobicity of the surface gradually recovered, and θA was changed from 12° to 81° for nine weeks of storage under air atmosphere when BP was used as a photoinitiator for graft polymerization of MPC. However, surface hydrophilicity (θA ≅ 20°) of the surface grafted with PMPC with PMBPP as an initiator was effectively preserved for nine weeks. This surface also showed excellent lubricity and non-fouling properties regardless of the storage periods. Therefore, zwitterionic photoreactive polymer, PMBPP, is then used as a macrophotoinitiator for the surface modification of PDMS.


Assuntos
Polímeros , Siloxanas , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos , Fosforilcolina , Reprodutibilidade dos Testes , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 10(49): 43252-43261, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30462477

RESUMO

Recent progress in the printing of soft materials has made it possible to fabricate soft stretchable devices for a range of engineering applications. These devices tend to be heterogeneous systems, and their reliability depends to a large extent on the integrity of the interfaces between the various materials in the system. Previous studies on the printing of hydrogels have highlighted the need to investigate the adhesion between extrusion printable dielectric elastomers and hydrogels. Here we consider polydimethylsiloxane (PDMS) and a polyacrylamide hydrogel that contains lithium chloride and a nonionic rheological modifier. We show that the adhesion between oxygen plasma-treated PDMS and the hydrogel increases with time to reach a stable value of 15 J m-2 after ∼6 days. During that time, the contact angle of water on the PDMS interface remains constant at ∼30°, suggesting that hydrophobic recovery of plasma-treated PDMS is suppressed by the presence of the hydrogel. It is further observed that a thin viscous layer develops at the interface between PDMS and hydrogel, which results in energy dissipation upon debonding and which allows full recovery of the adhesion after debonding and rejoining. This viscous layer develops only in the presence of the rheological modifier in the hydrogel and the hydrophilic surface treatment of the PDMS.

7.
ACS Appl Mater Interfaces ; 6(24): 22876-83, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25506712

RESUMO

Three types of commercially derived methylsilicone materials, Sylgard-184, Q(V)Q(H) (an MQ-based silicone containing no dimethylsiloxane, D units), and D(V)D(H) (a D-based silicone with no additives), were judiciously chosen to study the conditions under which long-lasting hydrophilicity after oxygen plasma treatment can be obtained. A 30 s plasma treatment time under controlled conditions was found to be optimal in terms of achieving the lowest initial advancing and receding contact angles of θ(A)/θ(R) = 10°/5° with undetectable surface damage. Vacuum treatment, a necessary step prior to plasma ignition that has been overlooked in previous studies, as well as room temperature curing were explored as means to remove low molecular weight species. For thin films (a few micrometers), 40 min vacuum treatment was sufficient to achieve low dynamic contact angles of θ(A)/θ(R) = 51-56°/38-43° on all three types of silicones measured more than 30 days after the plasma treatments. These values indicate superior hydrophilicity relative to what has been reported. The small and slow rise in contact angle over time is likely caused by the intrinsic nature of the silicone materials, i.e., surface reorientation of hydrophilic functional groups to the bulk and condensation of surface silanol groups, and is thus unavoidable. For thick films (∼1 mm), room temperature curing in addition to vacuum treatment was required to reduce hydrophobic recovery and to achieve long-lasting hydrophilicity. The final contact angles for thick samples were slightly higher than the corresponding thin film samples due to the greater "reservoir" depth and migration length for mobile species. In particular, Sylgard exhibited inferior performance among the thick samples, and we attribute this to the additives in its commercial formulation. Furthermore, unlike polydimethylsiloxane-based silicones, Q(V)Q(H) does not contain equilibration products of the Dn-type; its thin films perform as well as those of Sylgard and D(V)D(H). Silicones without D units are promising materials with intrinsically low hydrophobic recovery characteristics and long-lasting hydrophilicity after oxygen plasma treatment.

8.
J Colloid Interface Sci ; 435: 192-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063216

RESUMO

We demonstrate the possibility of hydrophilization of polymer films in situ under the process of their preparation. The polymer surface is hydrophilized when the polymer solution is spread on the water surface and the solvent is evaporated. Essential hydrophilization of the polymer surface is achieved under this process. We relate the observed hydrophilization of polymer films to the dipole-dipole interaction of the polar moieties of polymer chains with highly polar water molecules. The dipole-dipole interaction between water molecules and polar groups of polymer chains, orienting the polar groups of a polymer, may prevail over the London dispersion forces. The process, reported in the paper, allows to manufacture the films in which the hydrophilic moieties of the polymer molecule are oriented toward the polymer/air interface. It is demonstrated that even such traditionally extremely hydrophobic polymers as polydimethylsiloxane can be markedly hydrophilized. This hydrophilization, however, does not persist forever. After removal from the water surface, hydrophobic recovery was observed, i.e. polymer films restored their hydrophobicity with time. The characteristic time of the hydrophobic recovery is on the order of magnitude of hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA