Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 27(1): 257-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37311924

RESUMO

Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air-liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RT‒qPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.


Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Poliestirenos/metabolismo , Biofilmes , Expressão Gênica , Hidroxiapatitas/metabolismo , Lipídeos
2.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771083

RESUMO

When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.


Assuntos
Materiais Revestidos Biocompatíveis , Titânio , Titânio/farmacologia , Titânio/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Osso e Ossos , Antibacterianos/farmacologia , Antibacterianos/química , Durapatita/farmacologia , Durapatita/química , Propriedades de Superfície
3.
J Environ Manage ; 305: 114344, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953223

RESUMO

Soil fertility and phosphorus management by bone apatite amendment are receiving increasing attention, yet further research is needed to integrate the physicochemical and mineralogical transformation of bone apatite and their impact on the supply and storage of phosphorus in soil. This study has examined bone transformation in the field over a span of 10-years using a set of synchrotron-based microscopic and spectroscopic techniques. Transmission X-ray microscopy (TXM) observations reveal the in-situ deterioration of bone osteocyte-canaliculi system and sub-micron microbial tunneling within a year. Extensive organic decomposition, secondary mineral formation and re-mineralization of apatite are evident from the 3rd year. The relative ratio of (v1 + v3) PO43- to v3 CO32- and to amide I increase, and the v3c PO43- peak exhibits a blue-shift in less than 3 years. The carbonate substitution of bone hydroxyapatite (HAp) to AB-type CHAp, and phosphate crystallographic rearrangement become apparent after 10 years' aging. The overall CO32- peak absorbance increases over time, contributing to a higher acid susceptibility in the aged bone. The X-ray Photoelectron Spectroscopy (XPS) binding energies for Ca (2p), P (2p) and O (1s) exhibit a red-shift after 1 year because of organo-mineral interplay and a blue-shift starting from the 3rd year as a result of the de-coupling of mineral and organic components. Nutrient supply to soil occurs within months via organo-mineral decoupling and demineralization. More phosphorus has been released from the bones and enriched in the associated and adjacent soils over time. Lab incubation studies reveal prominent secondary mineral formation via re-precipitation at a pH similar to that in soil, which are highly amorphous and carbonate substituted and prone to further dissolution in an acidic environment. Our high-resolution observations reveal a stage-dependent microbial decomposition, phosphorus dissolution and immobilization via secondary mineral formation over time. The active cycling of phosphorus within the bone and its interplay with adjacent soil account for a sustainable supply and storage of phosphorus nutrients.


Assuntos
Apatitas , Fósforo , Osso e Ossos , Durapatita , Solo
4.
BMC Oral Health ; 22(1): 59, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246089

RESUMO

BACKGROUND: This study evaluated the adhesion and whitening efficacy of a mixture of hydroxyapatite and P11-4 self-assembling peptide (HAP-peptide) on bovine enamel after pre-treatment with low-concentrated sodium hypochlorite (NaOCl). METHODS: Fifty-two caries-free bovine incisors were selected. 50 teeth were randomly allocated to five groups (n = 10). The first group was treated with a mixture of 6.25 wt% HAP and 5 ml P11-4 peptide, using NaOCl 3% as pre-treatment. Second, third and fourth groups were treated with 6.25 wt% HAP, 5 ml P11-4 peptide, and NaOCl 3%, respectively. In the fifth group, only water was applied (control group). The color of samples was measured using a spectrophotometer (USB4000-VIS-NIR-ES, Ostfildern, Germany). To evaluate color changes, ΔE values were statistically analyzed. Finally, adherence of HAP particles on two enamel surfaces with and without pre-treatment with NaOCl was analyzed with SEM. RESULTS: It was observed that the ΔE of the HAP-peptide suspension after pre-treatment with NaOCl was significantly stronger than the control group. In contrast, the overall color changes of separate applications of HAP, peptide, and NaOCl did not differ notably from the control group. SEM observations confirmed that pre-treatment with NaOCl resulted in a more pronounced coverage of HAP on the enamel surface. CONCLUSIONS: Pre-treatment with a low-concentrated NaOCl enhanced the adherence of the HAP layer on the enamel surface, resulting in a stronger whitening effect. TRIAL REGISTRATION: The peptide-HAP suspension is effective in improving tooth whiteness.


Assuntos
Cárie Dentária , Clareamento Dental , Dente , Animais , Bovinos , Esmalte Dentário , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
5.
Clin Oral Investig ; 25(5): 3237-3247, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33108484

RESUMO

OBJECTIVES: This study evaluated the adhesion and whitening effects of a combination of P11-4 self-assembling peptide and hydroxyapatite (peptide-HAP) on bovine enamel. METHODS: Forty-six caries-free bovine teeth were selected, and 40 teeth were randomly allocated to one of five groups (n = 8). First, the effects of application frequency, exposure time, and storage in saliva on the whitening effects of an experimental low-concentrated peptide-HAP suspension (0.5 wt% HAP; Curodont, Credentis) were evaluated and compared with a commercial bleaching agent (VivaStyle Paint on Plus, VS, Ivoclar Vivadent). Tooth color was measured using a spectrophotometer (Gretag MacBeth), and color changes ΔE were statistically analyzed. Second, the effects of peptide-HAP concentration (low versus high: 6.25% HAP; Curodont Protect), and its interactions with saliva and postapplication restaining, were investigated. Third, enamel surfaces (n = 2) were treated with low concentration peptide-HAP and high-concentration peptide-HAP in polymeric and monomeric forms (Curodont Protect & Curodont Repair, Credentis) and analyzed by SEM. RESULTS: The ΔE of the low-concentration peptide-HAP suspension did not differ from that of VS. Application frequency, exposure time, and storage in saliva did not have any significant impact on whitening efficacy of the peptide-HAP suspension. Increasing the concentration of the suspension did not promote overall ΔE. SEM observations confirmed the presence of the newly generated peptide and HAP on the enamel surface. CONCLUSIONS: The peptide-HAP suspension is a mild tooth whitener, and the adhesion of peptide-HAP to enamel is concentration dependent. CLINICAL RELEVANCE: This peptide-HAP suspension is effective in offsetting discoloration caused by restaining after treatment.


Assuntos
Clareamento Dental , Dente , Animais , Bovinos , Cor , Esmalte Dentário , Durapatita , Peptídeos/farmacologia
6.
J Struct Biol ; 212(3): 107630, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979496

RESUMO

Amelogenin, a protein critical to enamel formation, is presented as a model for understanding how the structure of biomineralization proteins orchestrate biomineral formation. Amelogenin is the predominant biomineralization protein in the early stages of enamel formation and contributes to the controlled formation of hydroxyapatite (HAP) enamel crystals. The resulting enamel mineral is one of the hardest tissues in the human body and one of the hardest biominerals in nature. Structural studies have been hindered by the lack of techniques to evaluate surface adsorbed proteins and by amelogenin's disposition to self-assemble. Recent advancements in solution and solid state nuclear magnetic resonance (NMR) spectroscopy, atomic force microscopy (AFM), and recombinant isotope labeling strategies are now enabling detailed structural studies. These recent studies, coupled with insights from techniques such as CD and IR spectroscopy and computational methodologies, are contributing to important advancements in our structural understanding of amelogenesis. In this review we focus on recent advances in solution and solid state NMR spectroscopy and in situ AFM that reveal new insights into the secondary, tertiary, and quaternary structure of amelogenin by itself and in contact with HAP. These studies have increased our understanding of the interface between amelogenin and HAP and how amelogenin controls enamel formation.


Assuntos
Amelogenina/química , Proteínas do Esmalte Dentário/química , Durapatita/química , Sequência de Aminoácidos , Animais , Biomineralização/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica
7.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998323

RESUMO

Biomaterials, like hydroxyapatite (HAp), are the subject of many scientific investigations. Their specific application, however, is determined by the form and some characteristic features of the resulting material. Synthesis methods and optimization procedures leading to a product of predetermined characteristics are therefore of great interest. To broaden the existing knowledge, sonoprecipitation was investigated as a potential method for the production of nanosized HAp particles. The research was carried out in a static mixer (STM) immersed in the ultrasonic bath. The influence of operating conditions, e.g., ultrasonic power PUS (εUS), ultrasonic frequency (fUS), and unit mixing power (εmix), was investigated in terms of nucleation intensity, product quality, and characteristics (particle size distribution (PSD), mean size, shape, etc.). As a result, the optimal conditions for the HAp nanoparticles synthesis (mean size: d~150 nm; length: L1~250 nm; width: L2~80 nm) in the form of needles/whiskers/rods-similar to the shape of the HAp present in natural human bones, free from agglomerates, with negligible signs of particle destruction-were determined. The formation of HAp of smaller sizes (d ≤ 100 nm) and more compact shapes (L1~155 nm, L2~90 nm), useful in bone regeneration processes, was also discussed.

8.
Chemosphere ; 352: 141367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331264

RESUMO

Nanohydroxyapatite (n-HAP), recognized by its peculiar crystal architecture and distinctive attributes showcased the underlying potential in adsorbing heavy metal ions (HMI). In this paper, the intrinsic mechanism of HMI adsorption by n-HAP was first revealed. Subsequently, the selectivity and competitiveness of n-HAP for HMI in a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, n-HAP was further categorized according to its morphological dimensions, and its adsorption properties and intrinsic mechanisms were investigated based on these different morphologies. It was shown that although n-HAP has excellent adsorption capacity and cost-effectiveness, its application is often challenging to realize due to its inherent fragility and agglomeration, the technical problems required for its handling, and the difficulty of recycling. Finally, to address these issues, this paper discusses the tendency of n-HAP and its hybridized/modified materials to adsorb HMI as well as the limitations of their applications. By summarizing the limitations and future directions of hybridization/modification HAP in the field of HMI contamination abatement, this paper provides insightful perspectives for its gradual improvement and rational application.


Assuntos
Durapatita , Metais Pesados , Durapatita/química , Adsorção , Descontaminação , Cátions
9.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591467

RESUMO

The objective of this research was to develop a surface modification for the NiTi shape memory alloy, thereby enabling its long-term application in implant medicine. This was achieved through the creation of innovative multifunctional hybrid layers comprising a nanometric molecular system of silver-rutile (Ag-TiO2), known for its antibacterial properties, in conjunction with bioactive submicro- and nanosized hydroxyapatite (HAp). The multifunctional, continuous, crack-free coatings were produced using the electrophoretic deposition method (EPD) at 20 V/1 min. Structural and morphological analyses through Raman spectrometry and scanning electron microscopy (SEM) provided comprehensive insights into the obtained coating. The silver within the layer existed in the form of nanometric silver carbonates (Ag2CO3) and metallic nanosilver. Based on DTA/TG results, dilatometric measurements, and high-temperature microscopy, the heat treatment temperature for the deposited layers was set at 800 °C for 2 h. The procedures applied resulted in the creation of a new generation of materials with a distinct structure compared with the initial nanopowders. The resulting composite layer, measuring 2 µm in thickness, comprised hydroxyapatite (HAp), apatite carbonate (CHAp), metallic silver, silver oxides, Ag@C, and rutile exhibiting a defective structure. This structural characteristic contributes significantly to its heightened activity, influencing both bioactivity and biocompatibility properties.

10.
Biomater Adv ; 157: 213729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101068

RESUMO

Bioactive glasses have recently been attracted to meet the challenge in bone tissue regeneration, repair, healing, dental implants, etc. Among the conventional bio-glasses, a novel quaternary mesoporous nano bio-glass with composition 81S(81SiO2-(16-x)CaO-2P2O5-1Na2O-xMgO) (x = 0, 1.6, 2.4, 4 and 8 mol%) employing Stober's method has been explored for examining the above potential application through in-vitro SBF assay, MTT assay, antimicrobial activity and drug loading and release ability. With increasing the MgO concentration up to 4 mol%, from in-vitro SBF assay, we observe that HAp layer develops on the surface of the nBGs confirmed from XRD, FTIR and FESEM. MTT assay using MG-63 cells confirms the biocompatibility of the nBGs having cell viability >225 % for MGO_4 after 72 h which is more than the clinically used 45S5 bio-glass. We have observed cell viability of >125 % even after 168 h. Moreover, MGO_4 is found to restrict the growth of E. coli by 65 % while S. aureus by 75 %, confirming the antimicrobial activity. Despite an increase in the concentration of magnesium, nBGs are found to be non-toxic towards the RBCs up to 4 mol% of MgO while for 8 %, the hemolysis percentage is >6 % which is toxic. Being confirmed MGO_4 nBG as a bioactive material, various concentrations of drug (Dexamethasone (DEX)) loading and release kinetics are examined. We show that 80 % of loading in case of 10 mg-ml-1 and 70 % of cumulative release in 100 h. The mesoporous structure of MGO_4 having an average pore diameter of 5 nm and surface area of 216 m2 g-1 confirmed from BET supports the loading and release kinetics. We conclude that the quaternary MGO_4 nBG may be employed effectively for bone tissue regeneration due to its high biocompatibility, excellent in-vitro cell viability, antimicrobial response and protracted drug release.


Assuntos
Anti-Infecciosos , Óxido de Magnésio , Óxido de Magnésio/farmacologia , Óxido de Magnésio/química , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Vidro/química
11.
Quant Imaging Med Surg ; 14(3): 2345-2356, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545062

RESUMO

Background: Conventional computed tomography (CT) has low sensitivity for the diagnosis of bone marrow infiltration in nonosteolytic multiple myeloma (NOL-MM). This study aimed to compare the performance of the two-material decomposition technique of spectral CT with the removal of X-ray absorption components of calcium (Ca) versus that of hydroxyapatite (HAP) for diagnosis of NOL-MM. Methods: From October 2022 to March 2023, a total of 41 consecutive patients with MM without focal bone lesions undergoing chest spectral CT and thoracic spine magnetic resonance imaging (MRI) in Fujian Medical University Union Hospital were prospectively enrolled; meanwhile, another set of 41 age- and sex-matched healthy consecutive participants were selected as a comparison group. Based on MRI findings, patients with MM were classified with a diffuse infiltration pattern MM (DP-MM) or a normal pattern MM (NP-MM). Regions of interest (ROIs) were manually drawn on vertebrae. CT values of 70-keV images and basic material density within the ROIs were stored. The basic two-material pairs included a Ca-related pair (Ca-X) and an HAP-related pair (HAP-X), with X referring to fat, water, or muscle. Material density values DCa(X), DX(Ca), DHAP(X), and DX(HAP) were each used to diagnose MM, and the area under the receiver operating characteristic curve (AUC) was used to assess diagnostic performance. Results: The 41 patients with NOL-MM included 30 with DP-MM and 11 with NP-MM. CT value, DCa(X), and DHAP(X) were comparable between the NOL-MM, DP-MM, NP-MM, and comparison groups. DX(HAP) was better than DX(Ca) for distinguishing the NOL-MM group from the comparison group {AUC [95% confidence interval (CI)], 0.874 (0.800, 0.949) vs. 0.737 (0.630, 0.844); P=0.02}, the DP-MM group from the comparison group [AUC (95% CI), 0.933 (0.878, 0.989) vs. 0.785 (0.677, 0.894); P=0.01], the NP-MM group from the comparison group [AUC (95% CI), 0.714 (0.540, 0.888) vs. 0.605 (0.429, 0.782); P=0.03], and the DP-MM group from the NP-MM group [AUC (95% CI), 0.809 (0.654, 0.964) vs. 0.736 (0.566, 0.907); P=0.049]. The diagnostic performance of DX(HAP) and DX(Ca) was influenced only by the removed material, while the X material had no influence. Conclusions: The spectral CT two-material decomposition technique with removal of X-ray absorption components of HAP is useful for diagnosis of NOL-MM, irrespective of the paired material.

12.
Sci Rep ; 14(1): 12222, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806601

RESUMO

Calcification of aortic valve leaflets is a growing mortality threat for the 18 million human lives claimed globally each year by heart disease. Extensive research has focused on the cellular and molecular pathophysiology associated with calcification, yet the detailed composition, structure, distribution and etiological history of mineral deposition remains unknown. Here transdisciplinary geology, biology and medicine (GeoBioMed) approaches prove that leaflet calcification is driven by amorphous calcium phosphate (ACP), ACP at the threshold of transformation toward hydroxyapatite (HAP) and cholesterol biomineralization. A paragenetic sequence of events is observed that includes: (1) original formation of unaltered leaflet tissues: (2) individual and coalescing 100's nm- to 1 µm-scale ACP spherules and cholesterol crystals biomineralizing collagen fibers and smooth muscle cell myofilaments; (3) osteopontin coatings that stabilize ACP and collagen containment of nodules preventing exposure to the solution chemistry and water content of pumping blood, which combine to slow transformation to HAP; (4) mm-scale nodule growth via ACP spherule coalescence, diagenetic incorporation of altered collagen and aggregation with other ACP nodules; and (5) leaflet diastole and systole flexure causing nodules to twist, fold their encasing collagen fibers and increase stiffness. These in vivo mechanisms combine to slow leaflet calcification and establish previously unexplored hypotheses for testing novel drug therapies and clinical interventions as viable alternatives to current reliance on surgical/percutaneous valve implants.


Assuntos
Valva Aórtica , Calcinose , Fosfatos de Cálcio , Colágeno , Osteopontina , Fosfatos de Cálcio/metabolismo , Humanos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Osteopontina/metabolismo , Calcinose/metabolismo , Calcinose/prevenção & controle , Colágeno/metabolismo , Durapatita/metabolismo , Durapatita/química , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Colesterol/metabolismo
13.
Sci Technol Adv Mater ; 14(5): 055001, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877608

RESUMO

Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.

14.
Chemosphere ; 313: 137580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529167

RESUMO

Echoing to the call of recovering high-value-added chemicals from wastewater and achieving carbon-neutral operation in wastewater treatment, an anammox upflow hybrid reactor was successfully applied for nitrogen removal, and the potential for phosphorus recovery was put forward. Moreover, the spatial pattern of removal capacities, and distribution of biomass and HAP precipitates were recognized and demonstrated as height-oriented. The intensity of HAP precipitates was highly consistent with the amount of anammox biomass and the relative abundance of the Candidatus Kuenenia, indicating that HAP formation was encouraged by the anammox reaction itself and heterogeneous nucleation induced by organic matters (proteins and polysaccharides). The fixed bed also played an important role in immobilizing the anammox biomass, secreted organic matrix, and HAP precipitates. This finding also provoked the thought that in the anammox process, HAP precipitation was more achievable, effective and practicable using the fixed-carrier system.


Assuntos
Nitrogênio , Esgotos , Fósforo , Desnitrificação , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos
15.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837239

RESUMO

To functionalize and improve the biocompatibility of the surface of a medical implant made of NiTi shape memory alloy and used in practice, a clamp, multifunctional layers composed of amorphous TiO2 interlayer, and a hydroxyapatite coating were produced. Electrophoresis, as an efficient method of surface modification, resulted in the formation of a uniform coating under a voltage of 60 V and deposition time of 30 s over the entire volume of the implant. The applied heat treatment (800 °C/2 h) let toa dense, crack-free, well-adhered HAp coating with a thickness of ca. 1.5 µm. and a high crack resistance to deformation associated with the induction of the shape memory effect in the in the deformation range similar to the real implant work after implantation. Moreover, the obtained coating featured a hydrophilic (CA = 59.4 ± 0.3°) and high biocompatibility.

16.
ACS Biomater Sci Eng ; 9(8): 4607-4618, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452737

RESUMO

Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.


Assuntos
Nanopartículas Metálicas , Itérbio/química , Gadolínio/química , Durapatita/química , Meios de Contraste/química , Nanopartículas Metálicas/química , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
17.
Front Bioeng Biotechnol ; 11: 1101513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020510

RESUMO

The purpose of the study was to investigate the synthesis of economic calcium phosphate powders from recycled oyster shells, using a ball milling method. The oyster shell powder and a calcium pyrophosphate powder were used as starting materials and ball milled, then heat treated at 1,050°C for 5 h to produce calcium phosphate powders through a solid-state reaction. Electrochemically synthesized mesoporous silicon microparticles were then added to the prepared phosphate powders by mechanical mixer. The final powders were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy to analyze their chemical composition and determine the most suitable process conditions. The biocompatibility of the produced powders was also tested in vitro using murine cells and the results showed good biocompatibility.

18.
Diagnostics (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201375

RESUMO

(1) Background: The intent of this survey was to investigate the quality of the alveolar bone by revealing the different phases for calcified tissues independent of the medical history of the patient in relation to periodontal disease by means of Raman spectroscopy and then to correlate the results by suggesting a possible mechanism for the medical impairment; (2) Methods: The investigation was mainly based on Raman spectroscopy that was performed in vivo during surgery for the selected group of patients. The targeted peaks for the Raman spectra were according to the reference compounds (e.g., calcium phosphates, other phosphates); (3) Results: The variation in the intensity of the spectrum correlated to the specific bone constituents' concentrations highlights the bone quality, while some compounds (such as pyrophosphate, PPi) are strongly related to the patient's medical status, and they provide information regarding a physiological process that occurred in the calcified tissues. Moreover, bone sample fluorescence is related to the collagen (Col) content, enabling a complete evaluation of bone quality, revealing the importance of collagen matrix acting as a load-bearing element for Calcium phosphate (CaP) deposition during the complex bone mineralization process; (4) Conclusions: We highlight that Raman spectroscopy can be considered a viable investigative method for in vivo and rapid bone quality valuation through oral health monitoring.

19.
Materials (Basel) ; 16(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37834536

RESUMO

Synthetic calcium phosphates, e.g., hydroxyapatite (HAP) and tricalcium phosphate (TCP), are the most commonly used bone-graft materials due to their high chemical similarity to the natural hydroxyapatite-the inorganic component of bones. Calcium in the form of a free ion or bound complexes plays a key role in many biological functions, including bone regeneration. This paper explores the possibility of increasing the Ca2+-ion release from HAP nanoparticles (NPs) by reducing their size. Hydroxyapatite nanoparticles were obtained through microwave hydrothermal synthesis. Particles with a specific surface area ranging from 51 m2/g to 240 m2/g and with sizes of 39, 29, 19, 11, 10, and 9 nm were used in the experiment. The structure of the nanomaterial was also studied by means of helium pycnometry, X-ray diffraction (XRD), and transmission-electron microscopy (TEM). The calcium-ion release into phosphate-buffered saline (PBS) was studied. The highest release of Ca2+ ions, i.e., 18 mg/L, was observed in HAP with a specific surface area 240 m2/g and an average nanoparticle size of 9 nm. A significant increase in Ca2+-ion release was also observed with specific surface areas of 183 m2/g and above, and with nanoparticle sizes of 11 nm and below. No substantial size dependence was observed for the larger particle sizes.

20.
Adv Colloid Interface Sci ; 321: 103013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839281

RESUMO

Hydroxyapatite (HAp), a well-known biomaterial, has witnessed a remarkable evolution over the years, transforming from a simple biocompatible substance to an advanced functional material with a wide range of applications. This abstract provides an overview of the significant advancements in the field of HAp and its journey towards becoming a multifunctional material. Initially recognized for its exceptional biocompatibility and bioactivity, HAp gained prominence in the field of bone tissue engineering and dental applications. Its ability to integrate with surrounding tissues, promote cellular adhesion, and facilitate osseointegration made it an ideal candidate for various biomedical implants and coatings. As the understanding of HAp grew, researchers explored its potential beyond traditional biomaterial applications. With advances in material synthesis and engineering, HAp began to exhibit unique properties that extended its utility to other disciplines. Researchers successfully tailored the composition, morphology, and surface characteristics of HAp, leading to enhanced mechanical strength, controlled drug release capabilities, and improved biodegradability. These modifications enabled the utilization of HAp in drug delivery systems, biosensors, tissue engineering scaffolds, and regenerative medicine applications. Moreover, the exceptional biomineralization properties of HAp allowed for the incorporation of functional ions and molecules during synthesis, leading to the development of bioactive coatings and composites with specific therapeutic functionalities. These functionalized HAp materials have demonstrated promising results in antimicrobial coatings, controlled release systems for growth factors and therapeutic agents, and even as catalysts in chemical reactions. In recent years, HAp nanoparticles and nanostructured materials have emerged as a focal point of research due to their unique physicochemical properties and potential for targeted drug delivery, imaging, and theranostic applications. The ability to manipulate the size, shape, and surface chemistry of HAp at the nanoscale has paved the way for innovative approaches in personalized medicine and regenerative therapies. This abstract highlights the exceptional evolution of HAp, from a traditional biomaterial to an advanced functional material. The exploration of novel synthesis methods, surface modifications, and nanoengineering techniques has expanded the horizon of HAp applications, enabling its integration into diverse fields ranging from biomedicine to catalysis. Additionally, this manuscript discusses the emerging prospects of HAp-based materials in photocatalysis, sensing, and energy storage, showcasing its potential as an advanced functional material beyond the realm of biomedical applications. As research in this field progresses, the future holds tremendous potential for HAp-based materials to revolutionize medical treatments and contribute to the advancement of science and technology.


Assuntos
Nanopartículas , Nanoestruturas , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/química , Nanopartículas/química , Osso e Ossos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA