Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Sci Technol ; 58(2): 1109-1118, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164899

RESUMO

Hygroscopic growth of adsorbed water films on clay particles underlies a number of environmental science questions, from the air quality and climate impacts of mineral dust aerosols to the hydrology and mechanics of unsaturated soils and sedimentary rocks. Here, we use molecular dynamics (MD) simulations to establish the relation between adsorbed water film thickness (h) and relative humidity (RH) or disjoining pressure (Π), which has long been uncertain due to factors including sensitivity to particle shape, surface roughness, and aqueous chemistry. We present a new MD simulation approach that enables precise quantification of Π in films up to six water monolayers thick. We find that the hygroscopicity of phyllosilicate mineral surfaces increases in the order mica < K-smectite < Na-smectite. The relationship between Π and h on clay surfaces follows a double exponential decay with e-folding lengths of 2.3 and 7.5 Å. The two decay length scales are attributed to hydration repulsion and osmotic phenomena in the electrical double layer (EDL) at the clay-water interface.


Assuntos
Minerais , Silicatos , Água , Argila , Água/química , Molhabilidade
2.
J Environ Sci (China) ; 138: 167-178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135385

RESUMO

Under high relative humidity (RH) conditions, the release of volatile components (such as acetate) has a significant impact on the aerosol hygroscopicity. In this work, one surface plasmon resonance microscopy (SPRM) measurement system was introduced to determine the hygroscopic growth factors (GFs) of three acetate aerosols separately or mixed with glucose at different RHs. For Ca(CH3COO)2 or Mg(CH3COO)2 aerosols, the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH, which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide (Ca(OH)2 or Mg(OH)2) under high RH conditions. Then the third calculated GF (using the Zdanovskii-Stokes-Robinson method) for Ca(CH3COO)2 or Mg(CH3COO)2 in bicomponent aerosols with 1:1 mass ratio were 3.20% or 5.33% lower than that of the first calculated GF at 90% RH. The calculated results also showed that the hygroscopicity change of bicomponent aerosol was negatively correlated with glucose content, especially when the mass ratio of Mg(CH3COO)2 to glucose was 1:2, the GF at 90% RH only decreased by 4.67% after three cyclic humidification. Inductively coupled plasma atomic emission spectrum (ICP-AES) based measurements also indicated that the changes of Mg2+concentration in bicomponent was lower than that of the single-component. The results of this study reveal thatduring the efflorescence transitions of atmospheric nanoparticles, the organic acids diffusion rate may be inhibited by the coating effect of neutral organic components, and the particles aging cycle will be prolonged.


Assuntos
Microscopia , Ressonância de Plasmônio de Superfície , Molhabilidade , Aerossóis , Acetatos , Glucose
3.
J Environ Sci (China) ; 126: 483-493, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503775

RESUMO

When exposed to different relative humidities (RHs), the optical properties of atmospheric aerosols will change because of changes in the aerosol particle size and complex refractive index (RI), which will affect haze formation and global climate change. The potential contributions of ultrafine particles to the atmospheric optical characteristics and to haze spreading cannot be ignored because of their high particle number concentrations and strong diffusibility; measurement of the optical properties of wet ultrafine particles is thus highly important for environmental assessment. Therefore, a surface plasmon resonance microscopy with azimuthal rotation illumination (SPRM-ARI) system is designed to determine the RIs of single particle aerosols with diameters of less than 100 nm in the hygroscopic growth process. Measurements are taken using mixed single particles with different mass ratios. The RIs of mixed single aerosols at different RHs are retrieved by measuring the scattering light intensity using the SPRM-ARI system and almost all the RIs of the bicomponent particles with different mass ratios decrease with increasing water content under high RH conditions. Finally, for each of the bicomponent particles, the maximum standard deviations for the retrieved RI values are only 2.06×10-3, 3.08×10-3 and 3.83×10-3, corresponding to the NaCl and NaNO3 bicomponent particles with a 3:1 mass ratio at 76.0% RH, the NaCl and glucose particles with a 1:3 mass ratio at 89.0% RH, and the NaCl and OA particles with a 1:1 mass ratio at 78.0% RH, respectively; these results indicate that the high-sensitivity SPRM-ARI system can measure the RI effectively and accurately.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Microscopia , Material Particulado , Peptídeos e Proteínas de Sinalização Intercelular , Bismuto
4.
Environ Sci Technol ; 56(15): 10879-10890, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852155

RESUMO

The impact of respiratory particle composition on the equilibrium morphology and phase is not well understood. Furthermore, the effects of these different phases and morphologies on the viability of viruses embedded within these particles are equally unknown. Physiologically relevant respiratory fluid analogues were constructed, and their hygroscopic behavior was measured using an ensemble technique. A relationship between hygroscopicity and protein concentration was determined, providing additional validation to the high protein content of respiratory aerosol measured in prior works (>90%). It was found that the salt component of the respiratory particles could crystallize as a single crystal, multiple crystals, or would not crystallize at all. It was found that dried protein particles at indoor-relevant climatic conditions could exist separately in a glassy (∼77% of particles) or viscoelastic state (∼23% of particles). The phase state and morphology of respiratory particles may influence the viability of embedded pathogens. We recommend that pathogen research aiming to mimic the native composition of respiratory fluid should use a protein concentration of at least 90% by solute volume to improve the representativity of the pathogen's microenvironment.


Assuntos
Sistema Respiratório , Cloreto de Sódio , Aerossóis/química , Tamanho da Partícula , Cloreto de Sódio/química , Molhabilidade
5.
Ecotoxicol Environ Saf ; 243: 114023, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030686

RESUMO

Ultrafine particles (UFPs) usually explosive growth during new particle formation (NPF) events. However, the risk of exposure to UFPs on NPF days has been ignored due to the prevalence of mass-based air quality standards. In this study, the daily deposited doses, i.e., the daily deposited particle number dose (DPNd), mass dose (DPMd), and surface area dose (DPSd), of ambient particles in the human respiratory tract in Beijing were evaluated based on the particle number size distribution (3 nm-10 µm) from June 2018 to May 2019 utilizing a Multiple-Path Particle Dosimetry Model (MPPD) after the hygroscopic growth of particles in the respiratory tract had been accounted for. Our observations showed a high frequency (72.6%) of NPF on excellent air quality days, with daily mean PM2.5 concentrations less than 35 µg m-3. The daily DPNd on excellent air quality days was comparable with that on polluted days, although the DPMd on excellent air quality days was as low as 15.6% of that on polluted days. The DPNd on NPF days was ~1.3 times that on non-NPF days. The DPNd in respiratory tract regions decreased in the order: tracheobronchial (TB) > pulmonary (PUL) > extrathoracic (ET) on NPF days, while it was PUL > TB > ET on non-NPF days. The number of deposited nucleation mode particles, which were deposited mainly in the TB region (45%), was 2 times higher on NPF days than that on non-NPF days. Our results demonstrated that the deposition potential due to UFPs in terms of particle number concentrations is high in Beijing regardless of the aerosol mass concentration. More toxicological studies related to UFPs on NPF days, especially those targeting tracheobronchial and pulmonary impairment, are required in the future.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Pequim , Monitoramento Ambiental , Humanos , Pulmão/química , Tamanho da Partícula , Material Particulado/análise
6.
Environ Monit Assess ; 194(4): 322, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357591

RESUMO

Visibility and aerosol optical depth (AOD) characterization, and their relationship with PM10 and local and synoptic meteorology, were studied for January-March in 2014 and 2015 over Bangkok. Visibility degradation intensifies in the dry season as compared to the wet season due to increase in PM10 and unfavorable meteorological conditions. The average visibility is lower in January and February as compared to the other months. Relatively higher AOD in March despite lower PM10 is attributed to the synergetic effect of moderate relative humidity, secondary aerosols, elevated aerosol layer due to summertime convection, and biomass burning. Larger variability in visibility and PM10 in winter months is due to more synoptic weather fluctuations while AOD shows similar variability for all months attributed partly to fires. Higher PM10 and moderate-to-high relative humidity cause lower visibility in the morning while it improves in afternoon as PM10 and relative humidity decrease. AOD is higher in the afternoon as compared to that in the morning and evening as it is less sensitive to diurnal change in aerosols and meteorology at the surface level. Visibility and AOD relationships with PM10 are dependent on relative humidity. Weaker winds lead to lower visibility, higher PM10, and higher AOD irrespective of wind direction. Stronger winds improve visibility and decrease PM10 for all directions while AOD is higher for all directions except eastern and northeastern. The back-trajectory results show that the transport of pollutant and moist air is coupled with the synoptic weather and influence visibility and AOD. Two low-visibility events were investigated. The first event is potentially caused by the combined effect of local emissions and their accumulation due to stagnant weather conditions, secondary aerosols, and forest fires in the nearby regions. The second event can be attributed to the local emission and fires in the nearby area with hygroscopic growth of aerosols due to moist air from the Gulf of Thailand. Based on these findings, some policy implications have also been given.


Assuntos
Monitoramento Ambiental , Tempo (Meteorologia) , Aerossóis/análise , Monitoramento Ambiental/métodos , Estações do Ano , Tailândia
7.
J Aerosol Sci ; 146: 105581, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32346183

RESUMO

This study numerically investigates the effect of hygroscopicity on transport and deposition of particles in severe asthmatic lungs with distinct airway structures. The study human subjects were selected from two imaging-based severe asthmatic clusters with one characterized by non-constricted airways and the other by constricted airways in the lower left lobe (LLL). We compared the deposition fractions of sodium chloride (NaCl) particles with a range of aerodynamic diameters (1-8 µm) in cluster archetypes under conditions with and without hygroscopic growth. The temperature and water vapor distributions in the airways were simulated with an airway wall boundary condition that accounts for variable temperature and water vapor evaporation at the interface between the lumen and the airway surface liquid layer. On average, the deposition fraction increased by about 6% due to hygroscopic particle growth in the cluster subjects with constricted airways, while it increased by only about 0.5% in those with non-constricted airways. The effect of particle growth was most significant for particles with an initial diameter of 2 µm in the cluster subjects with constricted airways. The effect diminished with increasing particle size, especially for particles with an initial diameter larger than 4 µm. This suggests the necessity to differentiate asthmatic subjects by cluster in engineering the aerosol size for tailored treatment. Specifically, the treatment of severe asthmatic subjects who have constricted airways with inhalation aerosols may need submicron-sized hygroscopic particles to compensate for particle growth, if one targets for delivering to the peripheral region. These results could potentially inform the choice of particle size for inhalational drug delivery in a cluster-specific manner.

8.
J Environ Sci (China) ; 87: 49-59, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791517

RESUMO

To clarify the aerosol hygroscopic growth and optical properties of the Pearl River Delta (PRD) region, integrated observations were conducted in Heshan City of Guangdong Province from October 19 to November 17, 2014. The concentrations and chemical compositions of PM2.5, aerosol optical properties and meteorological parameters were measured. The mean value of PM2.5 increased from less than 35 (excellent) to 35-75 µg/m3 (good) and then to greater than 75 µg/m3 (pollution), corresponding to mean PM2.5 values of 24.9, 51.2, and 93.3 µg/m3, respectively. The aerosol scattering hygroscopic growth factor (f(RH = 80%)) values were 2.0, 2.12, and 2.18 for the excellent, good, and pollution levels, respectively. The atmospheric extinction coefficient (σext) and the absorption coefficient of aerosols (σap) increased, and the single scattering albedo (SSA) decreased from the excellent to the pollution levels. For different air mass sources, under excellent and good levels, the land air mass from northern Heshan had lower f(RH) and σsp values. In addition, the mixed aerosol from the sea and coastal cities had lower f(RH) and showed that the local sources of coastal cities have higher scattering characteristics in pollution periods.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , China , Material Particulado/análise , Molhabilidade
9.
J Environ Sci (China) ; 40: 35-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969543

RESUMO

The optical properties of aerosol as well as their impacting factors were investigated at a suburb site in Nanjing during autumn from 14 to 28 November 2012. More severe pollution was found together with lower visibility. The average scattering and absorption coefficients (Bsca and Babs) were 375.7 ± 209.5 and 41.6 ± 18.7 Mm(-1), respectively. Higher Ångström absorption and scattering exponents were attributed to the presence of more aged aerosol with smaller particles. Relative humidity (RH) was a key factor affecting aerosol extinction. High RH resulted in the impairment of visibility, with hygroscopic growth being independent of the dry extinction coefficient. The hygroscopic growth factor was 1.8 ± 1.2 with RH from 19% to 85%. Light absorption was enhanced by organic carbon (OC), elemental carbon (EC) and EC coatings, with contributions of 26%, 44% and 75% (532 nm), respectively. The Bsca and Babs increased with increasing N100 (number concentration of PM2.5 with diameter above 100 nm), PM1 surface concentration and PM2.5 mass concentration with good correlation.


Assuntos
Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Umidade , Fenômenos Ópticos , Tamanho da Partícula , Material Particulado/análise , Molhabilidade
10.
Sci Total Environ ; 912: 169516, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135088

RESUMO

Effective emission reduction measures have largely lowered the particulate concentration in China, but low-visibility events still occur frequently, greatly affecting people's daily life, travel, and health. In the context of carbon neutrality strategy and climate change, the mechanisms governing visibility changes may be undergoing a transformation. To address this critical issue, we have undertaken a comprehensive assessment by employing a novel approach that combines site observations, model-derived datasets, and machine learning techniques. Our analysis of the dataset shows varying degrees of improvement in wintertime visibility in regions such as North China, South China, and the Fenwei Plain over 2013-2019, but an unexpected deterioration (approximately 1 km yr-1) in central and southern China (CSC). We further elucidate key roles of PM2.5 reduction in these regions with visibility improvement; whereas the unsatisfactory visibility trend in CSC was caused by combined effect of relative humidity (RH) increase (47 %), aerosol hygroscopicity (κ) enhancement (9 %), and boundary layer (BLH) reduction (8 %), which greatly overwhelms the effect of PM2.5 reduction recently. Moreover, the study reveals a growing influence of RH on the wintertime visibility, reaching 40 % ± 24 % to the total contribution in 2019, while that of PM2.5 declined to 18 % ± 19 % and is expected to further diminish with emission reduction. Note those often-neglected factors-temperature, wind speed, BLH, and κ, account for over 40 % of the total contribution. Though the importance of aerosol hygroscopic growth to visibility was found decreasing recently, it retains non-negligible impacts on driving inter-annual visibility trends. This study yields innovative insights for air pollution control, underscoring the imperative of region-specific strategies to mitigate low-visibility events.

11.
Respir Physiol Neurobiol ; 326: 104271, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703974

RESUMO

The objective of this study is to explore the transport, size growth, and deposition of Salbutamol Sulphate (SS) using Computational Fluid Dynamics (CFD). A CT-based realistic model of human airways from the oral cavity to the 5th generation of the lung was utilized as the computational domain. Four Test Cases (TC) with varying temperature and relative humidity (RH) under two inspiratory waveforms were considered to completely evaluate the impact of inhalation conditions on particle growth. Salbutamol Sulphate (SS) is a ß2-adrenergic agonist and has been extensively used for asthma treatment. A monodispersed distribution of SS particles with an initial diameter of 167 nm was considered at the mouth inlet based on pharmaceutical data. Results indicated that inhalation of saturated/supersaturated air (RH>100%) leads to significant hygroscopic growth of SS particles with a factor of 10. In addition, the deposition efficiency of SS particles under the Quick and Deep (QD) inhalation profile was enhanced as the flow temperature and humidity increased. However, the implementation of Slow and Deep (SD) inspiratory waveform revealed that the same particle size growth is achieved in the respiratory system with lower deposition efficiency in the mouth-throat (less than 3%) and tracheobronchial airway (less than 2.18%). For the escaped particles form the right lung, in the SD waveform under TC 3, the maximum particle size distribution was for 600 nm particles with 25% probability. In the left lung, 30% of the particles were increased up to 950 nm in size. For the QD waveform in TC 3 and TC4, the most frequent particles were 800 nm with 36% probability. This holds practical significance in the context of deep lung delivery for asthmatic patients with enhanced deposition efficiency and large particle size. The findings of the present study can contribute to the development of targeted drug delivery strategies for the treatment of pulmonary diseases using hygroscopic dry powder formulations.


Assuntos
Albuterol , Simulação por Computador , Humanos , Albuterol/administração & dosagem , Albuterol/farmacologia , Administração por Inalação , Broncodilatadores/administração & dosagem , Broncodilatadores/farmacologia , Hidrodinâmica , Modelos Biológicos , Tamanho da Partícula , Umidade , Molhabilidade , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo
12.
Sci Total Environ ; 939: 173636, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821278

RESUMO

Low-molecular-weight (LMW) organic acids are among the most abundant water-soluble organic compounds, but their gas-particle partitioning mechanism remains unclear. In the present study, LMW organic acids were measured using a URG 9000D Ambient Ion Monitor in suburban Shanghai. The average concentrations of formic acid, acetic acid, oxalic acid, and methanesulfonic acid (MSA) in PM2.5 were 405 ± 116, 413 ± 11, 475 ± 266, and 161 ± 54 ng m-3, respectively. The particle fraction exceeded 30 % for formic acid and acetic acid. Model predictions underestimated the particle-phase monocarboxylic acids (MCAs) from the factor of 102 at the highest RH to 107 at the lowest RH. The average measured intrinsic Henry's law constants (Hmea) for formic acid, acetic acid, oxalic acid, and MSA were 3.8 × 107, 4.5 × 107, 8.7 × 108, and 3.4 × 107 mol L-1 atm-1, respectively, approximately four orders of magnitude higher than their literature-based intrinsic Henry's law constants (Hlit) for MCAs and approximately four orders of magnitude lower than Hlit, MSA. The ratio of Hmea /Hlit for MCAs ranged over three orders of magnitude, depending on relative humidity. The strong deviations at low RHs are attributed to the dominance of absorption by the organic phase. The discrepancy at the highest RH possibly relates to surfactant effects and dimer formation. We used Hmea as a model input for the first time to estimate the phase partitioning of particulate MCAs, finding that >80 % of MCAs resided in the organic phase under dry conditions. We propose parameterizing Hmea as model input to predict the multiphase partitioning of MCAs.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39102136

RESUMO

In this study, six individual machine learning (ML) models and a stacked ensemble model (SEM) were used for daytime visibility estimation at Bangkok airport during the dry season (November-April) for 2017-2022. The individual ML models are random forest, adaptive boosting, gradient boosting, extreme gradient boosting, light gradient boosting machine, and cat boosting. The SEM was developed by the combination of outputs from the individual models. Furthermore, the impact of factors affecting visibility was examined using the Shapley Additive exPlanation (SHAP) method, an interpretable ML technique inspired by the game theory-based approach. The predictor variables include different air pollutants, meteorological variables, and time-related variables. The light gradient boosting machine model is identified as the most effective individual ML model. On an hourly time scale, it showed the best performance across three out of four metrics with the ρ = 0.86, MB = 0, ME = 0.48 km (second lowest), and RMSE = 0.8 km. On a daily time scale, the model performed the best for all evaluation metrics with ρ = 0.92, MB = 0.0 km, ME = 0.3 km, and RMSE = 0.43 km. The SEM outperformed all the individual models across three out of four metrics on an hourly time scale with ρ = 0.88, MB = 0.0 km, (second lowest), and RMSE = 0.75 km. On the daily scale, it performed the best with ρ = 0.93, MB = 0.02 km, ME = 0.27 km, and RMSE = 0.4 km. The seasonal average original (VISorig) and meteorologically normalized visibility (VISnorm) decrease from 2017 to 2021 but increase in 2022. The rate of decrease in VISorig is double than rate of decrease in VISnorm which suggests the effect of meteorology visibility degradation. The SHAP analysis identified relative humidity (RH), PM2.5, PM10, day of the season year (i.e., Julian day) (JD), and O3 as the most important variables affecting visibility. At low RH, visibility is not sensitive to changes in RH. However, beyond a threshold, a negative correlation between RH and visibility is found potentially due to the hygroscopic growth of aerosols. The dependence of the Shapley values of PM2.5 and PM10 on RH and the change in average visibilities under different RH intervals also suggest the effect of hygroscopic growth of aerosol on visibility. A negative relationship has been identified between visibility and both PM2.5 and PM10. Visibility is positively correlated with O3 at lower to moderate concentrations, with diminishing impact at very high concentrations. The JD is strongly negatively related to visibility during winter while weakly associated positively later in summer. Findings from this research suggest the feasibility of employing machine learning techniques for predicting visibility and understanding the factors influencing its fluctuations.

14.
Sci Total Environ ; 951: 175307, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142408

RESUMO

Anthropogenically derived aerosols have been hypothesized to influence convective precipitation by increasing the available pool of cloud condensation nuclei. Here, we present a synthesis of aerosol size distribution and subsaturated hygroscopicity measurements between 15 and 250 nm diameter particles during the TRacking Aerosol Convection interactions ExpeRiment (TRACER). We found that the aerosol is externally mixed and can be described by a quasi-two-component description comprising a more and less hygroscopic mode. The mean hygroscopicity parameters for these modes across all sizes were 0.03 ± 0.04 and 0.22 ± 0.08 with no significant dependence on particle size. The number fraction of the more hygroscopic mode is 40 % for particles between 15 and 40 nm and gradually increases to ~70 % for particles >100 nm. Winds from the southerly direction feature particles with larger hygroscopicity parameters and have a larger fraction of particles in the more hygroscopic mode. The hygroscopicity parameter exhibits diurnal cycles that are consistent with condensation of a species with a hygroscopicity parameter ~0.1 which corresponds to values expected for secondary organic aerosol. We also identified nine small particle events that were attributed to particle formation by nucleation. The data are consistent with new particle formation having occurred aloft, followed by downward mixing with daytime turbulence. The species that are responsible for modal growth had hygroscopicity parameters varying between 0.05 and 0.34. These values systematically depended on the wind sector, suggesting that the chemical composition of the precursors differed. Hourly cloud condensation nuclei (CCN) and cloud droplet number concentration (CDNC) values derived from the aerosol size distribution, subsaturated hygroscopicity measurements, and adiabatic parcel model simulations showed a dynamic range of a factor of 2-3 in CDNC depending on the wind sector, with lower values associated with southerly onshore flow.

15.
Sci Total Environ ; 867: 161484, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639001

RESUMO

Aerosols undergo significant changes due to water uptake under high RH conditions, leading to changes in physical, optical, and chemical properties. Detailed assessment and investigation are needed to understand better aerosol liquid water content (ALWC) characteristics in highly polluted regions like Delhi. Therefore, in this study, we examined the mass concentration and the factors governing the ALWC associated with PM2.5 in Delhi for two winters (Dec 2019 to Jan 2020 and Dec 2020 to Feb 2021) using the real-time measurements of NR-PM2.5 from Aerodyne aerosol chemical speciation monitor (ACSM) and the application of thermodynamic modeling (ISORROPIA II). The average NR-PM2.5 mass concentration in the 2020-2021 winter was 152 µg/m3, about 50 % higher than the average mass concentration of 102 µg/m3 in 2019-2020. Consequently, the ALWC was also 60 % higher during 2020-2021, with an average mass concentration of 150 µg/m3. ALWC increased exponentially with RH and is significant when RH > 80 %. Further, all the inorganic components of NR-PM2.5 were found to contribute significantly to ALWC uptake; however, the relative contribution varied in different RH conditions. Ammonium sulphate dominated the ALWC uptake among the inorganic components at low RH, but ammonium nitrate was the dominant contributor at high RH. The decreased chloride mass fraction in inorganics in the recent winters reduced its relative contribution to ALWC. High ALWC mass concentration during high PM2.5 and high RH leads to a significant reduction in visibility. We further validated this visibility reduction by estimating the enhanced light scattering coefficient (f(RH)) and found that the hygroscopic growth is responsible for the enhanced visibility reduction during high RH conditions (> 85 %) when light scattering efficiency increased by a factor of >3.5. Sensitivity tests of f(RH) on mass concentration of inorganic salts showed that all the salts contributed almost equally. As revealed in our study, variations in PM2.5 mass concentration and composition despite similar meteorological conditions between different winters indicate changing regional aerosol emissions. Therefore, long-term observations of ALWC and PM2.5 chemical composition are required to arrive at actionable measures and mitigation strategies. Further, the focus should be on reducing the overall inorganic mass concentrations of PM2.5 in general, decreasing the absolute ALWC, and improving visibility.

16.
Sci Total Environ ; 867: 161588, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642280

RESUMO

The hygroscopicities of calcium and magnesium salts strongly affect the environment and climate, but the aging products of these salts at high relative humidities (RHs) are still poorly understood. In this study, surface plasmon resonance microscopy (SPRM) was used to determine the hygroscopic growth factors (GFs) of Ca(NO3)2 and Mg(NO3)2 separately or mixed with galactose at different mass ratios at different RHs before and after aging. For all particles, the measured GFs showed no indication of deliquescence across the range of RHs tested, and overall hygroscopicity was clearly lower after than before aging. The Ca(NO3)2 and Mg(NO3)2 GFs at 90 % RH were 1.80 and 1.66, respectively, before aging and 1.33 and 1.42, respectively, after 4 h aging, meaning aging decreased the GFs by 26.11 % and 14.46 %, respectively. Aging decreased the hygroscopicity because insoluble or sparingly soluble substances (CaSO3, CaSO4, MgSO3) formed and strongly changed the overall hygroscopicity. For bicomponent aerosols with different mass ratios, the GFs (calculated using the Zdanovskii-Stokes-Robinson method) of the other components except galactose at 90 % RH after 1 h aging were all lower, respectively, than the measured GFs of pure Ca(NO3)2 and Mg(NO3)2 after aging for 1 h, especially with the mass ratio of 1:2, their GFs have decreased by 14.63 % and 7.50 %, respectively. Subsequently, Ion chromatograms indicated that the peak area ratio of SO42- to NO3- ratios were higher for the aged bicomponent particles than aged single-component particles, possibly because adding galactose improved the gas-liquid state stability during drying after the aging process and therefore promoted nitrate consumption and sulfate formation. The results indicated that organic components may play important roles in heterogeneous reactions between trace gases and multicomponent aerosols and should be considered in evaluating the impacts on submicron aerosol composition of high atmospheric SO2 concentrations at high humidities.

17.
Chemosphere ; 336: 139260, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343644

RESUMO

Chemical transformations in mixed aerosols alter the particulate physical properties. Nitrates and water soluble dicarboxylic acids, such as malonic acid (MA), are major components of ambient aerosol particles. Various metal ions such as, Na+, Ca2+, Mg2+ also become part of these complex aerosol systems during their atmospheric lifetime. Interactions among the co-existing ionic and molecular species govern the chemical changes in the aerosol particles. In this work, we provide a comparative account of the effect of metal ion identity (Na+, Ca2+, Mg2+) on such chemical changes arising from ion-molecular interactions in NaNO3-MA, Ca(NO3)2-MA and Mg(NO3)2-MA mixed inorganic-organic aerosols. In-situ micro-Raman spectroscopy has enabled us to gain molecular level insight on formation of organic salt and simultaneously estimate nitrate depletion in these mixed aerosols during different stages of their hygroscopic cycle. In addition to the nitrate depletion often reported during the drying phase, this study has brought to light an intriguing observation: depletion of nitrate in the humidification phase as well, a phenomenon that has hitherto remained undocumented. For the mixed systems studied here, the extent of nitrate depletion follows the order Mg-MA (58%) > Ca-MA (43%) > Na-MA (15%). The comparatively huge forward shift in the acid displacement reaction equilibrium for the systems, Ca-MA and Mg-MA is driven by complexation. Our results highlight the profound effect of ion-molecular interactions on the acid displacement reaction equilibria in aerosols.


Assuntos
Poluentes Atmosféricos , Nitratos , Nitratos/química , Molhabilidade , Malonatos/química , Sódio , Compostos Orgânicos , Aerossóis/química
18.
Int J Pharm ; 636: 122805, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898619

RESUMO

This study aims to assess the effects of varying an ethanol co-solvent on the deposition of drug particles in severe asthmatic subjects with distinct airway structures and lung functions using computational fluid dynamics. The subjects were selected from two quantitative computed tomography imaging-based severe asthmatic clusters, differentiated by airway constriction in the left lower lobe. Drug aerosols were assumed to be generated from a pressurized metered-dose inhaler (MDI). The aerosolized droplet sizes were varied by increasing the ethanol co-solvent concentration in the MDI solution. The MDI formulation consists of 1,1,2,2-tetrafluoroethane (HFA-134a), ethanol, and beclomethasone dipropionate (BDP) as the active pharmaceutical ingredient. Since HFA-134a and ethanol are volatile, both substances evaporate rapidly under ambient conditions and trigger condensation of water vapor, increasing the size of aerosols that are predominantly composed of water and BDP. The average deposition fraction in intra-thoracic airways for severe asthmatic subjects with (or without) airway constriction increased from 37%±12 to 53.2%±9.4 (or from 20.7%± 4.6 to 34.7%±6.6) when the ethanol concentration was increased from 1 to 10%wt/wt. However, when the ethanol concentration was further increased from 10 to 20%wt/wt, the deposition fraction decreased. This indicates the importance of selecting appropriate co-solvent amounts during drug formulation development for the treatment of patients with narrowed airway disease. For severe asthmatic subjects with airway narrowing, the inhaled aerosol may benefit from a low hygroscopic effect by reducing ethanol concentration to penetrate the peripheral region effectively. These results could potentially inform the selection of co-solvent amounts for inhalation therapies in a cluster-specific manner.


Assuntos
Antiasmáticos , Asma , Humanos , Beclometasona , Etanol , Aerossóis e Gotículas Respiratórios , Asma/tratamento farmacológico , Administração por Inalação , Hidrocarbonetos Fluorados , Propelentes de Aerossol , Solventes
19.
Sci Total Environ ; 857(Pt 1): 159233, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208762

RESUMO

The influence of relative humidity on aerosol properties and the direct radiative forcing of PM10 and PM1 were investigated in Beijing from January 2018 to December 2019. The annual mean scattering hygroscopic growth factor at RH = 80 % [f(80 %)] of PM10 and PM1 were 1.60 ± 0.24 and 1.58 ± 0.22, respectively. The variation of aerosol hygroscopic growth factors of PM10 and PM1 aerosols was similar, which is mainly due to the fact that aerosol scattering in Beijing is dominated by fine particles. The seasonal mean f(80 %) of PM10 from spring to winter were 1.66 ± 0.23, 1.71 ± 0.25, 1.51 ± 0.20, 1.49 ± 0.16, respectively, which were higher in spring and summer, and lower in autumn and winter. The diurnal variation of f(80 %) was relatively higher from 12:00 to 18:00, which could be related to the formation of secondary aerosols by photochemical reactions. f(80 %) shows a strong positive relationship with both the scattering Angström exponent (SAE) and the single scattering albedo (ω0) under dry conditions; therefore, the scattering hygroscopic growth factor could be estimated using these two parameters. The upscatter fraction (ß) and single scattering albedo, which are the key aerosol optical properties for the calculation of direct radiative forcing, are also RH-dependent. As RH increases, the upscatter fraction (backscatter fraction) decreases and ω0 increases. The aerosol radiative forcing at RH 80 % was 1.48 times as that in the dry state. The sensitivity experiment showed that the variation in the scattering coefficient with relative humidity had the greatest influence on radiation forcing, followed by ß and ω0. The seasonal variation of ΔF(80 %)/ΔF(dry) coincides with that of the aerosol hygroscopic growth factor. Our study suggests that understanding the influence of relative humidity on aerosol properties and direct radiative forcing is important for accurately estimating the radiative forcing of aerosols.


Assuntos
Molhabilidade , Pequim , Aerossóis/análise , Estações do Ano
20.
Sci Total Environ ; 867: 161471, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634778

RESUMO

Satellite aerosol optical depth (AOD) provides an alternative way to depict the spatial distribution of near-surface PM2.5. In this study, a mathematical formulation of how PM2.5 is related to AOD is presented. When simplified to a linear equation, a functional dependence of the slope on the aerosol type, scattering enhancement factor f(RH), and boundary layer height is revealed, while the influence of the vertical aerosol profile is embedded in the intercept. Specifically, we focus on the effects of aerosol properties and employ a new aerosol index (Normalized Gradient Aerosol Index, NGAI) for classifying aerosol subtypes. The combination of AOD difference at shorter wavelengths over longer-wavelength AOD from AERONET data could distinguish and subclassify aerosol types previously indistinguishable by AE (i.e., urban-industrial pollution, U/I, and biomass burning, BB). AOD-PM2.5 regressions are performed on these aerosol subtypes at various relative humidity (RH) levels. The results suggest that BB aerosols are nearly hydrophobic until the RH exceeds 80 %, while the AOD-PM2.5 regressions for U/I depend on RH levels. Moreover, the scattering enhancement factor f(RH) can be calculated by taking the ratio of intercepts between dry and humidity conditions, which is proposed and tested for the first time in this study. Our results show an f(RH ≥ 80 %) of ∼2.6 for U/I-dominated aerosols, whereas the value is not over 1.5 for BB aerosols. The f(RH) can be further used to derive the optical hygroscopicity parameter (κsca), demonstrating that the NGAI can be used to exploit differences in aerosol hygroscopicity and improve the AOD-PM2.5 relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA