Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315835

RESUMO

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Acilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Transferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
Plant J ; 119(2): 645-657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761364

RESUMO

The interplay between microRNAs (miRNAs) and phytohormones allows plants to integrate multiple internal and external signals to optimize their survival of different environmental conditions. Here, we report that miR394 and its target gene LEAF CURLING RESPONSIVENESS (LCR), which are transcriptionally responsive to BR, participate in BR signaling to regulate hypocotyl elongation in Arabidopsis thaliana. Phenotypic analysis of various transgenic and mutant lines revealed that miR394 negatively regulates BR signaling during hypocotyl elongation, whereas LCR positively regulates this process. Genetically, miR394 functions upstream of BRASSINOSTEROID INSENSITIVE2 (BIN2), BRASSINAZOLEs RESISTANT1 (BZR1), and BRI1-EMS-SUPPRESSOR1 (BES1), but interacts with BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1 SUPRESSOR PROTEIN (BSU1). RNA-sequencing analysis suggested that miR394 inhibits BR signaling through BIN2, as miR394 regulates a significant number of genes in common with BIN2. Additionally, miR394 increases the accumulation of BIN2 but decreases the accumulation of BZR1 and BES1, which are phosphorylated by BIN2. MiR394 also represses the transcription of PACLOBUTRAZOL RESISTANCE1/5/6 and EXPANSIN8, key genes that regulate hypocotyl elongation and are targets of BZR1/BES1. These findings reveal a new role for a miRNA in BR signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Hipocótilo , MicroRNAs , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases
3.
Plant Physiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140970

RESUMO

After perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the Shade Avoidance Syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs (PIFs) and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation. Other components, such as phyA and ELONGATED HYPOCOTYL 5 (HY5), also participate in the shade regulation of the hypocotyl elongation response by repressing it. However, why and how so many regulators with either positive or negative activities modulate the same response remain unclear. Our physiological, genetic, cellular, and transcriptomic analyses showed that (1) these components are organized into two main branches or modules and (2) the connection between them is dynamic and changes with the time of shade exposure. We propose a model for the regulation of shade-induced hypocotyl elongation in which the temporal and spatial functional importance of the various SAS regulators analyzed here helps to explain the co-existence of differentiated regulatory branches with overlapping activities.

4.
Plant J ; 116(3): 804-822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522556

RESUMO

Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Ligação a DNA/genética
5.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190549

RESUMO

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Assuntos
Arabidopsis , Hidrolases de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Mutação/genética , Pectinas/metabolismo , Concentração de Íons de Hidrogênio
6.
EMBO J ; 39(13): e103630, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449547

RESUMO

Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Temperatura , Transativadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocótilo/genética , Transativadores/genética
7.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718571

RESUMO

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparo do DNA/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Morfogênese/efeitos da radiação , Luz Azul
8.
Biochem Biophys Res Commun ; 695: 149423, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157630

RESUMO

The Raffinose Family of Oligosaccharides (RFOs), including Galactinol, Raffinose, and Stachyose, are pivotal carbohydrates with significant roles in abiotic stress tolerance and growth within dynamic environments. Plant development is profoundly influenced by light, a major environmental signal. Despite this, the interconnections between the biosynthesis of secondary sugars and light signaling have remained unexplored. This study reveals that exposure to light induces the expression of Galactinol synthase (AtGolS1), a key enzyme in the RFO biosynthesis pathway. The light-inducible response of AtGolS1 operates downstream of ELONGATED HYPOCOTYL 5 (HY5), a central regulator in light signaling. Mutant seedlings with disrupted HY5 function (hy5-215) exhibit reduced AtGolS1 transcript accumulation compared to wild-type (WT) and HY5 overexpression seedlings. DNA-protein interaction studies demonstrate that HY5 directly binds to light-responsive cis-elements in the promoter region of AtGolS1, thereby mediating its light responsiveness. Quantification of galactinol revealed a diminished accumulation in the hy5-215 mutant compared to wild-type (WT) and HY5 overexpression seedlings. Consequently, these findings shed light on the intricate crosstalk between RFO biosynthesis and light signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dissacarídeos , Galactosiltransferases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Rafinose/metabolismo , Plântula/genética , Plântula/metabolismo
9.
Planta ; 260(2): 42, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958765

RESUMO

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Hipocótilo , Dióxido de Nitrogênio , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dióxido de Nitrogênio/farmacologia , Dióxido de Nitrogênio/metabolismo , Regiões Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutação
10.
Plant Biotechnol J ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861663

RESUMO

The length of hypocotyl affects the height of soybean and lodging resistance, thus determining the final grain yield. However, research on soybean hypocotyl length is scarce, and the regulatory mechanisms are not fully understood. Here, we identified a module controlling the transport of sucrose, where sucrose acts as a messenger moved from cotyledon to hypocotyl, regulating hypocotyl elongation. This module comprises four key genes, namely MYB33, SWEET11, SWEET21 and GA2ox8c in soybean. In cotyledon, MYB33 is responsive to sucrose and promotes the expression of SWEET11 and SWEET21, thereby facilitating sucrose transport from the cotyledon to the hypocotyl. Subsequently, sucrose transported from the cotyledon up-regulates the expression of GA2ox8c in the hypocotyl, which ultimately affects the length of the hypocotyl. During the domestication and improvement of soybean, an allele of MYB33 with enhanced abilities to promote SWEET11 and SWEET21 has gradually become enriched in landraces and cultivated varieties, SWEET11 and SWEET21 exhibit high conservation and have undergone a strong purified selection and GA2ox8c is under a strong artificial selection. Our findings identify a new molecular pathway in controlling soybean hypocotyl elongation and provide new insights into the molecular mechanism of sugar transport in soybean.

11.
New Phytol ; 241(2): 687-702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950543

RESUMO

Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas
12.
New Phytol ; 241(1): 253-266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865885

RESUMO

Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild-type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Genótipo , Hipocótilo/metabolismo , Fenótipo , Plântula/genética , Plântula/metabolismo
13.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238896

RESUMO

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação , Calcineurina/genética , Calcineurina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sementes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
14.
J Exp Bot ; 75(11): 3368-3387, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38492237

RESUMO

During the last decade, knowledge about BBX proteins has greatly increased. Genome-wide studies identified the BBX gene family in several ornamental, industry, and food crops; however, reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during the life span of plants. Through inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later in development, it controls the balance between cell division and expansion to guarantee correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), up-regulates flavonoid biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology because they affect not only multiple processes during plant development but they also regulate other genes at the transcriptional and post-translational levels.


Assuntos
Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
15.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824096

RESUMO

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Ann Bot ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081208

RESUMO

BACKGROUND AND AIMS: Soil salinization adversely threatens plant survival and food production globally. The mobilization of storage reserves in cotyledons and establishment of the hypocotyl/root axis (HRA) structure and function are crucial to the growth of dicotyledonous plants during the post-germination growth period. Here, we report the adaptive mechanisms of wild and cultivated soybeans in response to alkali stress in soil during the post-germination growth period. METHODS: Diferences in physiological parameters, microstructure, and the types, amounts and metabolic pathways of small molecule metabolites and gene expression were compared and multi-omics integration analysis was performed between wild and cultivated soybean under sufcient and artifcially simulated alkali stress during the post-germination growth period in this study. KEY RESULTS: Structural analysis showed that the cell wall thickness of wild soybean under alkali stress increased, whereas cultivated soybeans were severely damaged. A comprehensive analysis of small molecule metabolites and gene expression revealed that protein breakdown in wild soybean cotyledons under alkali stress was enhanced, and transport of amino acids and sucrose increased. Additionally, lignin and cellulose synthesis in wild soybean HRA under alkali stress were enhanced. CONCLUSIONS: verall, protein decomposition and transport of amino acids and sucrose increased in wild soybean cotyledons under alkali stress, which in turn, promotes HRA growth. Similarly, lignin and cellulose synthesis in wild soybean HRA enhanced, which subsequently, enhanced cell wall synthesis, thereby maintaining the stability and functionality of HRA under alkali stress. This study presents important practical implications for the utilization of wild plant resources and sustainable development of agriculture.

17.
Ann Bot ; 133(3): 447-458, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38141653

RESUMO

BACKGROUND AND AIMS: Cress seeds release allelochemicals that over-stimulate the elongation of hypocotyls of neighbouring (potentially competing) seedlings and inhibit their root growth. The hypocotyl promoter is potassium, but the root inhibitor was unidentified; its nature is investigated here. METHODS: Low-molecular-weight cress-seed exudate (LCSE) from imbibed Lepidium sativum seeds was fractionated by phase partitioning, paper chromatography, high-voltage electrophoresis and gel-permeation chromatography (on Bio-Gel P-2). Fractions, compared with pure potassium salts, were bioassayed for effects on Amaranthus caudatus seedling growth in the dark for 4 days. KEY RESULTS: The LCSE robustly promoted amaranth hypocotyl elongation and inhibited root growth. The hypocotyl inhibitor was non-volatile, hot acid stable, hydrophilic and resistant to incineration, as expected for K+. The root inhibitor(s) had similar properties but were organic (activity lost on incineration). The root inhibitor(s) remained in the aqueous phase (at pH 2.0, 6.5 and 9.0) when partitioned against butan-1-ol or toluene, and were thus hydrophilic. Activity was diminished after electrophoresis, but the remaining root inhibitors were neutral. They became undetectable after paper chromatography; therefore, they probably comprised multiple compounds, which separated from each other, in part, during fractionation. On gel-permeation chromatography, the root inhibitor co-eluted with hexoses. CONCLUSIONS: Cress-seed allelochemicals inhibiting root growth are different from the agent (K+) that over-stimulates hypocotyl elongation and the former probably comprise a mixture of small, non-volatile, hydrophilic, organic substances. Abundant components identified chromatographically and by electrophoresis in cress-seed exudate fitting this description include glucose, fructose, sucrose and galacturonic acid. However, none of these sugars co-chromatographed and co-electrophoresed with the root-inhibitory principle of LCSE, and none of them (in pure form at naturally occurring concentrations) inhibited root growth. We conclude that the root-inhibiting allelochemicals of cress-seed exudate remain unidentified.


Assuntos
Brassicaceae , Feromônios/análise , Feromônios/farmacologia , Inibidores do Crescimento/análise , Inibidores do Crescimento/farmacologia , Exsudatos e Transudatos , Plântula , Sementes/química , Verduras , Potássio
18.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928189

RESUMO

Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.


Assuntos
Éxons , Regulação da Expressão Gênica de Plantas , Glycine max , Hipocótilo , Fotossíntese , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Fotossíntese/genética , Éxons/genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Deleção de Sequência , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Fenótipo
19.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125592

RESUMO

The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulação da Expressão Gênica de Plantas , Hipocótilo , Regiões Promotoras Genéticas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Transdução de Sinais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Terminação de Peptídeos , Transativadores
20.
J Integr Plant Biol ; 66(5): 956-972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558526

RESUMO

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hipocótilo , Receptores de Quinase C Ativada , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Transdução de Sinais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Transdução de Sinal Luminoso , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA