Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Neuroendocrinol ; 69: 101066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015302

RESUMO

Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.


Assuntos
Doenças Neurodegenerativas , Neuropeptídeos , Animais , Humanos , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Acoplados a Proteínas G
2.
J Sleep Res ; 32(5): e13878, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36934366

RESUMO

The orexin 2 receptor-selective agonist danavorexton (TAK-925) has been shown to produce wake-promoting effects in wild-type mice, narcolepsy-model mice, and individuals with narcolepsy type 1 and type 2. Here, we report wake-promoting effects of danavorexton in non-human primates and healthy men during their sleep phase. Electroencephalogram analyses revealed that subcutaneous administration of danavorexton significantly increased wakefulness in common marmosets (p < 0.05 at 0.1 mg kg-1 , and p < 0.001 at 1 mg kg-1 and 10 mg kg-1 ) and cynomolgus monkeys (p ≤ 0.05 at 1 mg kg-1 and 3 mg kg-1 ). In a phase 1b crossover, randomized, double-blind, placebo-controlled and active-controlled study in sleep-deprived healthy participants (ClinicalTrials.gov identifier: NCT03522506), modafinil 300 mg (used to demonstrate assay sensitivity) and continuous infusion of danavorexton 44 mg and danavorexton 112 mg showed statistically superior wake-promoting effects to placebo (n = 18). Measured using the Maintenance of Wakefulness Test, mean (standard deviation) sleep latencies during infusion of danavorexton 44 mg, danavorexton 112 mg and placebo were 21.4 (8.9), 31.8 (3.2) and 9.2 (6.4) min, respectively. Least-squares mean difference from placebo in average sleep latency was 16.8 min with danavorexton 44 mg and 30.2 min with danavorexton 112 mg (both p < 0.001). Karolinska Sleepiness Scale scores were statistically significantly lower (indicating decreased sleepiness) for participants receiving danavorexton than for those receiving placebo during infusion (danavorexton 44 mg, p = 0.010; danavorexton 112 mg, p < 0.001). Together, these results indicate that an orexin 2 receptor agonist increases wakefulness in non-human primates and healthy individuals during their sleep phase.


Assuntos
Narcolepsia , Orexinas , Vigília , Animais , Método Duplo-Cego , Narcolepsia/tratamento farmacológico , Orexinas/farmacologia , Primatas , Sonolência , Resultado do Tratamento , Vigília/efeitos dos fármacos , Humanos , Masculino
3.
J Neurochem ; 157(5): 1473-1494, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33608877

RESUMO

Orexins are hypothalamic neuropeptides originally discovered to play a role in the regulation of feeding behaviour. The broad connections of orexin neurons to mesocorticolimbic circuitry suggest they may play a role in mediating reward-related behaviour beyond homeostatic feeding. Here, we review the role of orexin in a variety of eating-related behaviour, with a focus on reward and motivation, and the neural circuits driving these effects. One emerging finding is the involvement of orexins in hedonic and appetitive behaviour towards palatable food, in addition to their role in homeostatic feeding. This review discusses the brain circuitry and possible mechanisms underlying the role of orexins in these behaviours. Overall, there is a marked bias in the literature towards studies involving male subjects. As such, future work needs to be done to involve female subjects. In summary, orexins play an important role in driving motivation for high salient rewards such as highly palatable food and may serve as the intersection between homeostatic and hedonic feeding.


Assuntos
Comportamento Alimentar/fisiologia , Homeostase/fisiologia , Orexinas/fisiologia , Filosofia , Animais , Alimentos , Humanos , Receptores de Orexina , Recompensa
4.
J Neurosci Res ; 98(1): 201-211, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30895638

RESUMO

Approaches that facilitate the recovery from coma would have enormous impacts on patient outcomes and medical economics. Orexin-producing neurons release orexins (also known as hypocretins) energy-dependently to maintain arousal. Hyperbaric oxygen (HBO) could increase ATP levels by preserving mitochondrial function. We investigated, for the first time, the arousal effects of HBO and orexins mechanisms in a rat model of unconsciousness induced by ketamine or ethanol. A total of 120 Sprague-Dawley male rats were used in this study. Unconsciousness was induced either by intraperitoneal injection of ketamine or ethanol. The HBO treatment (100% O2 at 3 ATA) was administered immediately after unconsciousness induction for 1 hr. SB334867, orexin-1 receptor (OX1R) inhibitor, or JNJ10397049, orexin-2 receptor (OX2R) inhibitor was administered 30 min intraperitoneally before unconsciousness induction. Loss of righting reflex test (LORR) and Garcia test were used to evaluate the unconsciousness duration and neurological deficits after recovering from unconsciousness, respectively. Enzyme-linked immunosorbent assay was used to measure brain tissue ATP and orexin A levels. Ketamine or ethanol injection resulted in LORR immediately and neurological deficits 6 hr after unconsciousness induction. HBO treatment significantly reduced the LORR duration, improved Garcia scores and unregulated ATP and orexin A levels in the brain tissue. Administration of OX1R inhibitor or OX2 R inhibitor abolished arousal and neurological benefits of HBO. In conclusion, HBO exerted arousal-promoting effects on unconscious rats induced by ketamine or ethanol. The underlying mechanism was via, at least in part, ATP/orexin A upregulation. HBO may be a practical clinical approach to accelerate unconsciousness recovery in patients.


Assuntos
Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/metabolismo , Inconsciência/metabolismo , Regulação para Cima , Animais , Nível de Alerta/efeitos dos fármacos , Benzoxazóis/farmacologia , Dioxanos/farmacologia , Etanol , Oxigenoterapia Hiperbárica , Ketamina , Masculino , Naftiridinas/farmacologia , Compostos de Fenilureia/farmacologia , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Inconsciência/induzido quimicamente , Ureia/análogos & derivados , Ureia/farmacologia
5.
J Exp Biol ; 223(Pt 13)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32457059

RESUMO

The loss of orexinergic neurons, which release orexins, results in narcolepsy. Orexins participate in the regulation of many physiological functions, and their role as wake-promoting molecules has been widely described. Less is known about the involvement of orexins in body temperature and respiratory regulation. The aim of this study was to investigate if orexin peptides modulate respiratory regulation as a function of ambient temperature (Ta) during different sleep stages. Respiratory phenotype of male orexin knockout (KO-ORX, N=9) and wild-type (WT, N=8) mice was studied at thermoneutrality (Ta=30°C) or during mild cold exposure (Ta=20°C) inside a whole-body plethysmography chamber. The states of wakefulness (W), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) were scored non-invasively, using a previously validated technique. In both WT and KO-ORX mice, Ta strongly and significantly affected ventilatory period and minute ventilation values during NREMS and REMS; moreover, the occurrence rate of sleep apneas in NREMS was significantly reduced at Ta=20°C compared with Ta=30°C. Overall, there were no differences in respiratory regulation during sleep between WT and KO-ORX mice, except for sigh occurrence rate, which was significantly increased at Ta=20°C compared with Ta=30°C in WT mice, but not in KO-ORX mice. These results do not support a main role for orexin peptides in the temperature-dependent modulation of respiratory regulation during sleep. However, we showed that the occurrence rate of sleep apneas critically depends on Ta, without any significant effect of orexin peptides.


Assuntos
Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Orexinas , Fenótipo , Sono , Temperatura , Vigília
6.
Front Neuroendocrinol ; 51: 132-145, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29932958

RESUMO

The neuropeptides orexins are important in regulating the neurobiological systems that respond to stressful stimuli. Furthermore, orexins are known to play a role many of the phenotypes associated with stress-related mental illness such as changes in cognition, sleep-wake states, and appetite. Interestingly, orexins are altered in stress-related psychiatric disorders such as Major Depressive Disorder and Anxiety Disorders. Thus, orexins may be a potential target for treatment of these disorders. In this review, we will focus on what is known about the role of orexins in acute and repeated stress, in stress-induced phenotypes relevant to psychiatric illness in preclinical models, and in stress-related psychiatric illness in humans. We will also briefly discuss how orexins may contribute to sex differences in the stress response and subsequent phenotypes relevant to mental health, as many stress-related psychiatric disorders are twice as prevalent in women.


Assuntos
Transtornos de Ansiedade/metabolismo , Transtorno Depressivo Maior/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Orexinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Animais , Feminino , Humanos , Masculino
7.
Horm Behav ; 65(3): 294-300, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24397997

RESUMO

The orexins are hypothalamic neuropeptides most well known for their roles in regulating feeding and sleeping behaviors. Recent findings suggest that orexin-A may also modulate anxiety, although how and when the orexin system is involved remains unclear. To address this, we investigated the dose-dependent effects of the orexin-1 receptor antagonist SB-334867 in two rodent models of anxiety: the cat odor avoidance model and the elevated plus maze. In both models we tested the effects of SB-334867 when anxiety is novel (Trial 1) and familiar (Trial 2). In the first experiment, Wistar rats were treated with vehicle or SB-334867 (5, 10 or 20mg/kg, i.p.) prior to their first or second exposure to cat odor. During Trial 1, rats treated with 10mg/kg of SB-334867 approached the cat odor stimulus more than vehicle-treated rats. During Trial 2 the effects were more marked, with 10mg/kg of SB-334867 increasing approach times, increasing the number of times rats exited the hide box to engage in exploratory behavior, and decreasing overall hide times. In addition, the 20mg/kg dose decreased general activity during Trial 2. In the second experiment, the effects of SB-334867 (10 and 20mg/kg) were tested in the elevated plus maze. There were no significant differences produced by drug treatment during either Trial 1 or Trial 2. Results suggest that SB-334867 decreases anxiety induced by some, but not all, stressors.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal/fisiologia , Benzoxazóis/farmacologia , Antagonistas dos Receptores de Orexina , Ureia/análogos & derivados , Animais , Ansiedade/induzido quimicamente , Ansiedade/etiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Benzoxazóis/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Naftiridinas , Odorantes , Ratos , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Estresse Psicológico/complicações , Ureia/administração & dosagem , Ureia/farmacologia
8.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37944520

RESUMO

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Assuntos
Hipotálamo , Memória Espacial , Camundongos , Animais , Orexinas/metabolismo , Hipotálamo/metabolismo , Neurônios/fisiologia , Região Hipotalâmica Lateral/fisiologia
9.
Am J Physiol Heart Circ Physiol ; 305(12): H1683-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097430

RESUMO

There is increasing evidence that cardiovascular control during sleep is relevant for cardiovascular risk. This evidence warrants increased experimental efforts to understand the physiological mechanisms of such control. This review summarizes current knowledge on autonomic features of sleep states [non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS)] and proposes some testable hypotheses concerning the underlying neural circuits. The physiological reduction of blood pressure (BP) during the night (BP dipping phenomenon) is mainly caused by generalized cardiovascular deactivation and baroreflex resetting during NREMS, which, in turn, are primarily a consequence of central autonomic commands. Central commands during NREMS may involve the hypothalamic ventrolateral preoptic area, central thermoregulatory and central baroreflex pathways, and command neurons in the pons and midbrain. During REMS, opposing changes in vascular resistance in different regional beds have the net effect of increasing BP compared with that of NREMS. In addition, there are transient increases in BP and baroreflex suppression associated with bursts of brain and skeletal muscle activity during REMS. These effects are also primarily a consequence of central autonomic commands, which may involve the midbrain periaqueductal gray, the sublaterodorsal and peduncular pontine nuclei, and the vestibular and raphe obscurus medullary nuclei. A key role in permitting physiological changes in BP during sleep may be played by orexin peptides released by hypothalamic neurons, which target the postulated neural pathways of central autonomic commands during NREMS and REMS. Experimental verification of these hypotheses may help reveal which central neural pathways and mechanisms are most essential for sleep-related changes in cardiovascular function.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Sono/fisiologia , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Neurônios/fisiologia , Vigília/fisiologia
10.
Cancer Genomics Proteomics ; 20(6suppl): 637-645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035703

RESUMO

Prostate cancer (PCa) is the second most common cancer in humans. Peptides have recently been used as targeted therapeutics in cancers, due to their extensive multi-functional applications. Two hypothalamic peptides, orexins A (OXA) and B (OXB) and their specific receptors, orexin receptor 1 (OX1R) and 2 (OX2R), orchestrate several biological processes in the central nervous system and peripheral organs. However, in addition to their role in physiological responses, orexins are involved in numerous inflammatory and/or neoplastic pathologies. The presence and expression of orexins in different cancer models, including prostate cancer, and their role in inducing pro- or anti-apoptotic responses in tumor cell lines, suggest that the orexinergic system might have potential therapeutic action or function as a diagnostic marker in PCa. In addition to the traditional animal models for studying human PCa, the canine model might also serve as an additional tool, due to its clinical similarities with human prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Animais , Cães , Humanos , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Neoplasias da Próstata/tratamento farmacológico
11.
Cureus ; 15(1): e34009, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36814741

RESUMO

Neurohormones are neurosecretory materials released by neurosecretory cells that serve both as neuromodulators in the brain and spinal cord and as circulating regulatory hormones. They serve a wide range of functions, including homeostasis, development, and modulation of neuronal and muscle activity. In the hypothalamus, neurohormones called hypocretins are created that were discovered in the late nineties. Orexin receptors (OXRs) have been shown to enhance synaptic signaling in the central nervous system at the cellular level. The orexins improve stimulated neural activity in the hippocampus, which, in turn, aids with spatial memory, learning, and mood. They present themselves as mediators for the hypothalamic functions. They have been shown to regulate sleep-wake cycles, arousal mechanisms, addiction, sympathetic nerve activity (SNA), blood pressure, and thermogenesis. Its role in storing brown adipose tissue has implications for thermal homeostasis. The significant role of orexins is seen in tumorigenesis when orexin A (OrxA) and orexin B (OrxB) induce apoptosis in fast-growing tumor cells. Orexin-null subjects show clinical narcolepsy, indicating that orexins were responsible for keeping them awake. Orexin microinjections in mice brains stimulated increased physical activity, thus possibly countering diet-induced obesity. Physical activity significantly increased plasma orexin-A levels, which facilitated the process of energy homeostasis. The amount of adrenocorticotropic hormone (ACTH) increases in stress conditions, which further facilitates the release of the stress hormone cortisol. No increase in the ACTH hormone is seen in stressed mice administered with orexin receptor 2 (OX2R) antagonists thus showing orexin's role in stress reaction. As a result of linking hypocretin/orexin to various physiological procedures, increased research into the medicinal potential of drugs targeting these receptors is emerging. We summed up in this review the recent advances in our understanding of how orexin and its receptor system play an essential role in clinical and pathological functions. This research summarizes a new area for research in human medicine, providing the possibility of controlling a vast array of physiological functions through intra-cerebroventricular injections of a single neuropeptide.

12.
Front Neuroanat ; 16: 993421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157325

RESUMO

Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor-characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster-a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.

13.
Cureus ; 14(4): e24551, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35651471

RESUMO

Galactose-α-1,3-galactose, an oligosaccharide epitope better acknowledged as α-Gal, is present in non-primate mammal meat, tick bites, microorganisms, and vaccines as a glycoprotein or glycolipid moiety. This can manifest hyperimmune reactions as it enters the human body, known as α-Gal syndrome (AGS). AGS and Guillain-Barré syndrome share cognate immunogenic pathomechanism via conquering immune tolerance further speculating galactose navigated neurological sequel. Unusual symptomatic presentation of abulia in our case, with incidental finding of high titers of α-Gal specific IgE immunoglobulin further supported by temporal resolution of symptoms on abstinence of meat products, raises a high degree of suspicion of neuro-psychiatric manifestation in sensitized α-Gal patients. The pathomechanism is blurry, and an absence of an objective diagnostic tool makes the neurological diagnosis challenging. α-Gal driven immune-related hypothalamic dysfunction could be a possibility that needs further exploration and is a topic of research.

14.
Front Neurosci ; 15: 660518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093114

RESUMO

The loss of hypothalamic neurons that produce wake-promoting orexin (hypocretin) neuropeptides is responsible for narcolepsy type 1 (NT1). While the number of histamine neurons is increased in patients with NT1, results on orexin-deficient mouse models of NT1 are inconsistent. On the other hand, the effect of histamine deficiency on orexin neuron number has never been tested on mammals, even though histamine has been reported to be essential for the development of a functional orexin system in zebrafish. The aim of this study was to test whether histamine neurons are increased in number in orexin-deficient mice and whether orexin neurons are decreased in number in histamine-deficient mice. The hypothalamic neurons expressing L-histidine decarboxylase (HDC), the histamine synthesis enzyme, and those expressing orexin A were counted in four orexin knock-out mice, four histamine-deficient HDC knock-out mice, and four wild-type C57BL/6J mice. The number of HDC-positive neurons was significantly higher in orexin knock-out than in wild-type mice (2,502 ± 77 vs. 1,800 ± 213, respectively, one-tailed t-test, P = 0.011). Conversely, the number of orexin neurons was not significantly lower in HDC knock-out than in wild-type mice (2,306 ± 56 vs. 2,320 ± 120, respectively, one-tailed t-test, P = 0.459). These data support the view that orexin peptide deficiency is sufficient to increase histamine neuron number, supporting the involvement of the histamine waking system in the pathophysiology of NT1. Conversely, these data do not support a significant role of histamine in orexin neuron development in mammals.

15.
Handb Clin Neurol ; 182: 33-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34266603

RESUMO

Stress system dysfunction is a typical characteristic of acute depression and other mood disorders. The exact pattern of factors predisposing for stress-related mental disorders is yet to be unraveled. However, corticosteroid receptor function plays an important role for appropriate or dysfunctional neuroendocrine responses to stress exposure and hence in resilience or risk for the development and course of both, depression and anxiety disorders. Solid neuroscience data strongly support that both neuropeptides, corticotropin-releasing hormone (CRH) and vasopressin (AVP), are central in coordinating humoral and behavioral adaptation to stress. Other neuropeptides, including oxytocin, neuropeptide S, neuropeptide Y, and orexin, are also considered important contributors. Attempts to turn neuropeptide biology into treatments for stress-related disorders need to consider that neuropeptide receptors are specific drug targets for certain patient populations rather than universal targets for all patients, like biogenic amine systems. That is why most negative clinical trials testing neuropeptide receptor antagonists have been in fact failed trials by design, because no companion tests were used to identify which patients with depression are most likely to benefit from a specific neuropeptide receptor-targeting drug treatment. Therefore, the most important future research task is discovery and development of appropriate companion tests that will allow the successful transfer of the precious treasure of neuropeptide system-targeting drugs into clinics.


Assuntos
Transtornos do Humor , Neuropeptídeos , Hormônio Liberador da Corticotropina , Depressão , Humanos , Transtornos do Humor/etiologia , Ocitocina
16.
J Comp Physiol B ; 190(4): 493-507, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32399793

RESUMO

Under conditions of scarce food availability and cool ambient temperature, the mouse (Mus Musculus) enters into torpor, a state of transient metabolic suppression mediated in part by the autonomic nervous system. Hypothalamic orexins are involved in the coordination of behaviors and autonomic function. We tested whether orexins are necessary for the coordinated changes in physiological variables, which underlie torpor and represent its physiological signature. We performed simultaneous measurements of brain temperature, electroencephalographic, and electromyographic activity allowing objective assessment of wake-sleep behavior, and cardiovascular, respiratory, and metabolic variables in orexin knockout mice (ORX-KO) and wild-type mice (WT) during torpor bouts elicited by caloric restriction and mild cold stress. We found that torpor bouts in WT are characterized by an exquisitely coordinated physiological signature. The characteristics of torpor bouts in terms of duration and rate of change of brain temperature and electromyographic activity at torpor entrance and exit did not differ significantly between ORX-KO and WT, and neither did the cardiovascular, respiratory, and metabolic characteristics of torpor. ORX-KO and WT also had similar wake-sleep state changes associated with torpor bouts, with the exception of a significantly higher rapid-eye movement sleep time in ORX-KO at torpor entrance. Our results demonstrate that orexins are not necessary either for the normal physiological adaptations occurring during torpor in mice or for their coordination, suggesting that mechanisms different from orexin peptide signaling may be involved in the regulation and the coordination of these physiological responses.


Assuntos
Torpor/fisiologia , Animais , Encéfalo/fisiologia , Eletroencefalografia , Eletromiografia , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orexinas/genética , Orexinas/fisiologia , Consumo de Oxigênio , Sono/fisiologia , Vigília/fisiologia
17.
Sleep ; 43(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-31919524

RESUMO

The sleep disorder narcolepsy is associated with symptoms related to either boundary state control that include excessive daytime sleepiness and sleep fragmentation, or rapid eye movement (REM) sleep features including cataplexy, sleep paralysis, hallucinations, and sleep-onset REM sleep events (SOREMs). Although the loss of Hypocretin/Orexin (Hcrt/Ox) peptides or their receptors have been associated with the disease, here we propose a circuit perspective of the pathophysiological mechanisms of these narcolepsy symptoms that encompasses brain regions, neuronal circuits, cell types, and transmitters beyond the Hcrt/Ox system. We further discuss future experimental strategies to investigate brain-wide mechanisms of narcolepsy that will be essential for a better understanding and treatment of the disease.


Assuntos
Cataplexia , Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Neuropeptídeos , Cataplexia/diagnóstico , Humanos , Narcolepsia/diagnóstico , Orexinas , Sono REM
18.
Brain Res ; 1731: 145893, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30081036

RESUMO

Women are twice as likely as men to suffer from stress-related psychiatric disorders, such as post-traumatic stress disorder (PTSD) and Major Depressive Disorder (MDD), however, the biological basis of these sex differences is not fully understood. Interestingly, orexins are known to be dysregulated in these disorders. This review first discusses the important role of orexins regulating the response to stress. Next, we review the evidence for sex differences in the orexin system, in which the majority of both preclinical and clinical studies have reported higher orexin system expression in females. Finally, we discuss the functional consequences of these sex differences in orexin expression. Most importantly, the preclinical literature reveals that higher orexin system activity in females contributes to exaggerated neuroendocrine and behavioral responses to stress. In sum, the available data suggests that orexins may be important in the etiology of stress-related psychiatric disorders that present differently in men and women. Thus, targeting orexins could potentially ameliorate many phenotypes of stress-related illness in a sex-specific way.


Assuntos
Encéfalo/fisiopatologia , Orexinas/fisiologia , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Animais , Feminino , Humanos , Masculino , Receptores de Orexina/fisiologia
19.
J Affect Disord ; 277: 204-211, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829196

RESUMO

BACKGROUND: Cognitive impairment has long challenged the patients with major depressive disorder (MDD), hypocretins and inflammation have recently been implicated in cognitive function. However, limited studies have compressively assessed their associations with cognitive impairment in MDD. METHODS: A total of 100 MDD patients and 100 healthy controls (HC) were recruited for this study. They were tested with HAMD, HAMA, and MCCB scales. The plasma level of selected inflammatory factors (IL-1ß, IL-6, and TNF-α) and hypocretin-1 were determined using enzyme-linked immunosorbent assay (ELISA). Correlation analysis was performed to explore the relationship between the plasma level of the factors and clinical performances. RESULTS: Patients with MDD showed cognitive impairment in each MCCB subdomain except working memory compared with HC. The levels of IL-6, IL-1ß and hypocretin-1 in MDD patients were higher than HC. Besides, IL-1ß levels was negatively correlated with overall cognitive function in the combined group. Hypocretin-1 was positively correlated with socially cognitive impairment in MDD patients. A negative correlation between plasma hypocretin-1 levels and HAMA scales was also observed in MDD patients. LIMITATION: The study was cross-sectional, thereby limiting causal inference, and had a relatively small sample size. There are no subcategories for MDD based on characteristics. CONCLUSION: IL-1ß, IL-6 and Hypocretin-1 were reported as potential factors involved in MDD pathology. Hypocretin-1 could contribute to the biological mechanisms of anxiety relief. Hypocretin-1, therefore, may be important in exploring the pathological mechanisms of social cognitive impairment in MDD patients. Conclusively, this study provides new insights for exploring cognitive impairment in depression.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Disfunção Cognitiva/etiologia , Estudos Transversais , Depressão , Humanos , Interleucina-6 , Orexinas
20.
Neuroscience ; 418: 266-278, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442567

RESUMO

We recently found that non-stressed female rats have higher basal prepro-orexin expression and activation of orexinergic neurons compared to non-stressed males, which lead to impaired habituation to repeated restraint stress at the behavioral, neural, and endocrine level. Here, we extended our study of sex differences in the orexin system by examining spine densities and dendritic morphology in putative orexin neurons in adult male and female rats that were exposed to 5 consecutive days of 30-min restraint. Analysis of spine distribution and density indicated that putative orexinergic neurons in control non-stressed females had significantly more dendritic spines than those in control males, and the majority of these were mushroom spines. This morphological finding may suggest more excitatory input onto orexin neurons in female rats. As orexin neurons are known to promote the hypothalamic-pituitary-adrenal response, this morphological change in orexin neurons could underlie the impaired habituation to repeated stress in female rats. Dendritic complexity did not differ between non-stressed males and females, however repeated restraint stress decreased total dendritic length, nodes, and branching primarily in males. Thus, reduced dendritic complexity of putative orexinergic neurons is observed in males but not in females after 5days of repeated restraint stress. This morphological change might be reflective of decreased orexin system function, which may allow males to habituate more fully to repeated restraint than females. These results extend our understanding of the role of orexin neurons in regulating habituation and demonstrate changes in putative orexin cell morphology and spines that may underlie sex differences in habituation.


Assuntos
Espinhas Dendríticas/metabolismo , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Animais , Feminino , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA