Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897752

RESUMO

Recent data suggests that (pre)diabetes onset is preceded by a period of hyperinsulinemia. Consumption of the "modern" Western diet, over-nutrition, genetic background, decreased hepatic insulin clearance, and fetal/metabolic programming may increase insulin secretion, thereby causing chronic hyperinsulinemia. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, polycystic ovarian syndrome, and Alzheimer's disease. Recent data suggests that the onset of prediabetes and diabetes are preceded by a variable period of hyperinsulinemia. Emerging data suggest that chromic hyperinsulinemia is also a driving force for increased activation of the hypothalamic-adrenal-pituitary (HPA) axis in subjects with the metabolic syndrome, leading to a state of "functional hypercortisolism". This "functional hypercortisolism" by antagonizing insulin actions may prevent hypoglycemia. It also disturbs energy balance by shifting energy fluxes away from muscles toward abdominal fat stores. Synergistic effects of hyperinsulinemia and "functional hypercortisolism" promote abdominal visceral obesity and insulin resistance which are core pathophysiological components of the metabolic syndrome. It is hypothesized that hyperinsulinemia-induced increased activation of the HPA axis plays an important etiological role in the development of the metabolic syndrome and its consequences. Numerous studies have demonstrated reversibility of hyperinsulinemia with lifestyle, surgical, and pharmaceutical-based therapies. Longitudinal studies should be performed to investigate whether strategies that reduce hyperinsulinemia at an early stage are successfully in preventing increased activation of the HPA axis and the metabolic syndrome.


Assuntos
Síndrome de Cushing , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Síndrome de Cushing/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
2.
Cell Biochem Funct ; 39(2): 335-343, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32911572

RESUMO

Lixisenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is used in the treatment of type 2 diabetes mellitus (T2DM). It increases insulin (INS) secretion and can decrease INS resistance, improving metabolic disorders in this disease. However, its effects on metabolic disturbances in cancer-bearing, which also exhibit decreased INS secretion and INS resistance, changes that may contribute to weight loss (cachexia), have not yet been evaluated. The purpose of this study was to investigate the lixisenatide treatment effects on mild cachexia and related metabolic abnormalities in Walker-256 tumour-bearing rats. Lixisenatide (50 µg kg-1 , SC) was administered once daily, for 6 days, after inoculation of Walker-256 tumour cells. Acute lixisenatide treatment did not improve hypoinsulinemia, INS secretion and INS resistance of tumour-bearing rats. It also did not prevent the reduced glucose and increased triacylglycerol and lactate in the blood and nor the loss of retroperitoneal and epididymal fat of these animals. However, acute lixisenatide treatment accentuated the body mass loss of tumour-bearing rats. Therefore, lixisenatide, unlike T2DM, does not improve hypoinsulinemia and INS resistance associated with cancer, evidencing that it does not have the same beneficial effects in these two diseases. In addition, lixisenatide aggravated weight loss of tumour-bearing rats, suggesting that its use for treatment of T2DM patients with cancer should be avoided. SIGNIFICANCE OF THE STUDY: Lixisenatide increases insulin secretion and appears to reduce insulin resistance in T2DM. However, lixisenatide treatment does not improve hypoinsulinemia and insulin resistance associated with cancer, as it does in T2DM, and aggravated weight loss, suggesting that its use for treatment of T2DM patients with cancer should be avoided.


Assuntos
Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Glicemia/análise , Caquexia/prevenção & controle , Linhagem Celular Tumoral , Glucose/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Transplante Heterólogo , Triglicerídeos/sangue , Redução de Peso/efeitos dos fármacos
3.
BMC Geriatr ; 20(1): 451, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153458

RESUMO

BACKGROUND: McArdle disease is a myopathy caused by mutations in PYGM gene that is characterized by reduced or absent activity of myophosphorylase. Reports of patients with concomitant McArdle disease and diabetes are scarce. We report a case of a patient with a late diagnosis of McArdle disease and we postulate that symptoms may be related to hypoinsulinemia. CASE PRESENTATION: This report describes the evolution of an elderly diabetic patient with confirmed diagnosis of McArdle's disease based on the absence of myophosphorylase activity in the analysis of muscle biopsy, and a homozygous mutation in the PYGM gene. The variant - Chr11: 64.525 (p. Asn168*fs) has not been previously described. The diagnosis of McArdle disease was confirmed after two episodes of rhabdomyolysis, at 77 and 81 years of age, as the symptoms were, until then, discrete. The "second-wind phenomenon" was not spontaneously reported, but it was confirmed when directly questioned. We postulate that the later episodes of rhabdomyolysis occurred because of a progressive decrease in insulin production with a consequent reduction in the uptake of blood glucose by muscle cells, thus compromising the cellular energy balance. To our knowledge, this is the first report of recurrent rhabdomyolysis in an elderly diabetic patient with genetically proven McArdle disease. Our initial attempt to reduce insulin resistance with metformin and pioglitazone was not effective, possibly because of inadequate insulinemia. However, an improvement was evident after the administration of low doses of intermediate-acting insulin. CONCLUSIONS: In view of the patient's clinical evolution, we suggest the use of medication that reduces insulin resistance for patients with McArdle disease and type 2 diabetes, pre-diabetes or even normoglycemic metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Rabdomiólise , Idoso , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Mutação , Rabdomiólise/complicações , Rabdomiólise/diagnóstico , Rabdomiólise/genética
4.
Pediatr Endocrinol Rev ; 17(Suppl 1): 191-197, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32208563

RESUMO

Both in vitro and in vivo experimental studies proved that insulin has an important anabolic role. This physiological function of insulin is reflected in its well documented involvement in protein metabolism and in acceleration of cell proliferation. Support for a growth promoting action of insulin is further provided by clinical studies that revealed that children with hypoinsulinemia have a decreased growth rate whereas, on the other hand, children with hyperinsulinemia have an accelerated growth. While it was initially assumed that the growth activities of insulin are facilitated via cross-talk with the closely related insulin-like growth factor-1 receptor (IGF-1R), it is now clear that the vast majority of these activities are mediated via direct interaction with the insulin receptor (IR). The present article provides an overview of the growth and proliferative actions of insulin, with an emphasis on a number of pathological conditions, including cancer.


Assuntos
Insulina/uso terapêutico , Hormônio do Crescimento , Hormônio do Crescimento Humano , Humanos , Fator de Crescimento Insulin-Like I , Receptor IGF Tipo 1
5.
Can J Physiol Pharmacol ; 96(5): 498-505, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29304290

RESUMO

Metformin (MET) is widely used in the correction of insulin (INS) resistance and metabolic abnormalities in type 2 diabetes. However, its effect on INS resistance and metabolic disorders associated with cancer cachexia is not established. We investigated the MET effects, isolated or associated with INS, on INS resistance and metabolic changes induced by Walker-256 tumor in rats with advanced cachexia. MET (500 mg·kg-1, oral) and MET + INS (1.0 IU·kg-1, s.c.) were administered for 12 days, starting on the day of tumor cell inoculation. Tumor-bearing rats showed adipose and muscle mass wasting, body mass loss, anorexia, decreased Akt phosphorylation in retroperitoneal and mesenteric adipose tissue, peripheral INS resistance, hypoinsulinemia, reduced INS content and secretion from pancreatic islets, and also inhibition of glycolysis, gluconeogenesis, and glycogenolysis in liver. MET and MET + INS treatments did not prevent these changes. It can be concluded that treatments with MET and MET + INS did not prevent the adipose and muscle mass wasting and body mass loss of tumor-bearing rats possibly by not improving INS resistance. Therefore, MET, used for the treatment of INS resistance in type 2 diabetes, is not effective in improving INS resistance in the advanced stage of cancer cachexia, evidencing that the drug does not have the same beneficial effect in these 2 diseases.


Assuntos
Caquexia/complicações , Caquexia/metabolismo , Resistência à Insulina , Metformina/farmacologia , Neoplasias/complicações , Animais , Caquexia/tratamento farmacológico , Caquexia/patologia , Insulina/metabolismo , Masculino , Metformina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
6.
Addict Biol ; 19(6): 1006-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23834715

RESUMO

Patients with diabetes display a heightened propensity to use tobacco; however, it is unclear whether they experience enhanced rewarding effects of nicotine. Thus, this study examined the reinforcing effects of nicotine in a rodent model of diabetes involving administration of streptozotocin (STZ), a drug that is toxic to pancreatic insulin-producing cells. The first study compared STZ- and vehicle-treated rats that had 23-hour access to intravenous self-administration (IVSA) of nicotine or saline and concomitant access to food and water. In order to examine the contribution of dopamine to our behavioral effects, dopamine transporter (DAT), D1 and D2 receptor levels were compared in the nucleus accumbens (NAc) following 10 days of nicotine or saline IVSA. Dopamine levels in the NAc were also compared following nicotine administration. Lastly, nicotine metabolism and dose-dependent effects of nicotine IVSA were assessed. The results revealed that STZ-treated rats displayed enhanced nicotine intake and a robust increase in food and water intake relative to controls. Protein analysis revealed an increase in DAT and a decrease in D1 receptor levels in the NAc of STZ- versus vehicle-treated rats regardless of IVSA condition. STZ-treated rats also displayed suppressed NAc dopamine levels during baseline and in response to nicotine. STZ treatment did not alter our assessment of nicotine metabolism. Furthermore, STZ treatment increased nicotine IVSA in a dose-dependent manner. Our findings suggest that STZ-treatment increased the rewarding effects of nicotine. This suggests that strong reinforcing effects of nicotine may contribute to greater tobacco use in patients with diabetes.


Assuntos
Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Recompensa , Animais , Glicemia/metabolismo , Condicionamento Operante/efeitos dos fármacos , Diabetes Mellitus Experimental , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Infusões Intravenosas , Masculino , Nicotina/farmacocinética , Agonistas Nicotínicos/farmacocinética , Núcleo Accumbens/metabolismo , Ratos Wistar , Reforço Psicológico , Autoadministração
7.
Endocr Relat Cancer ; 30(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971780

RESUMO

Meta-analyses from 2018-2022 have shown that obesity increases the risk of various cancers such as acute myeloid lymphoma, chronic myeloid lymphoma, diffuse beta cell lymphoma, Hodgkin's lymphoma, leukemia, multiple myeloma, non-Hodgkin's lymphoma, bladder, breast, cholangiocarcinoma, colorectal, ovarian, esophageal, kidney, liver, prostate, thyroid, and uterus. Contextually, obesity, and its comorbidities, is the largest, most lethal pandemics in the history of mankind; hence, identification of underlying mechanisms is needed to adequately address this global health threat. Herein, we present the metabolic and hormonal mechanisms linked to obesity that might etiologically contribute to neoplasia, including hyperinsulinemia and putative places in the insulin-signaling pathway. Excess insulin, acting as a growth factor, might contribute to tumorigenesis, while abundant ATP and GDP supply the additional energy needed for proliferation of rapidly dividing cells. Our observations in the Ecuadorian cohort of subjects with Laron syndrome (ELS) prove that obesity does not always associate with increased cancer risk. Indeed, despite excess body fat from birth to death, these individuals display a diminished incidence of cancer when compared to their age- and sex-matched relatives. Furthermore, in cell cultures exposed to potent oxidizing agents, addition of ELS serum induces less DNA damage as well as increased apoptosis. ELS individuals have absent growth hormone (GH) counter-regulatory effects in carbohydrate metabolism due to a defective GH receptor. The corresponding biochemical phenotype includes extremely low basal serum concentrations of insulin and insulin-like growth factor-I, lower basal glucose and triglyceride (TG) levels, and diminished glucose, TG, and insulin responses to orally administered glucose or to a mixed meal.


Assuntos
Síndrome de Laron , Neoplasias , Masculino , Feminino , Humanos , Síndrome de Laron/genética , Equador , Fator de Crescimento Insulin-Like I , Insulina , Neoplasias/epidemiologia , Neoplasias/complicações , Obesidade/epidemiologia , Obesidade/complicações , Glucose
8.
Pharmacol Rep ; 75(6): 1571-1587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804392

RESUMO

BACKGROUND: Insulin (INS) resistance and hypoinsulinemia commonly observed in cancer-carrying, can contribute to cachexia. However, the effects of INS and INS sensitizers, such as pioglitazone (PIO), particularly when used in combination therapy, on cancer cachexia have not been evaluated sufficiently. We investigated the effects of INS and PIO, at various doses, either isolated or combined, on cachexia in Walker-256 tumor-bearing rats (TB rats). METHODS: INS or INS + PIO were administered in TB rats, for 6 or 12 days, starting from the day of tumor cells inoculation. RESULTS: INS at 18 or 27 U/kg (12-days treatment), but not 9 U/kg, reduced fat loss and slightly prevented weight loss. However, INS 18 U/kg + PIO 5, 10, 20, or 40 mg/kg (6 or 12-day treatment) reduced fat loss and markedly prevented weight loss but did not affect muscle wasting. While TB rats lost weight (37.9% in 12 days), TB rats treated with INS 18 U/kg + PIO 5 mg/kg showed pronounced weight gain (73.7%), which was greater than the sum (synergism) of the weight gains promoted by isolated treatments with INS 18 U/kg (14.7%) or PIO 5 mg/kg (13.1%). The beneficial effect of the INS 18 U/kg + PIO 5 mg/kg on weight loss was associated with improved INS sensitivity, as indicated by the higher blood glucose clearance constant (kITT), decreased levels of free fatty acids and triacylglycerols (INS resistance-inducing factors) in the blood, and increased expression of p-Akt (INS signaling pathway protein) in adipose tissue. CONCLUSIONS: The combined treatment with INS 18 U/kg + PIO 5 mg/kg was more effective in preventing advanced cachexia in TB rats than each treatment alone, emerging as the best approach, considering the lower dosage and higher efficacy. This combination completely preserved adipose mass and markedly reduced weight loss through a synergistic mechanism linked to improved insulin sensitivity. These findings provide new insights into the importance of drug combinations in effectively combating fat loss in advanced cachexia.


Assuntos
Resistência à Insulina , Neoplasias , Tiazolidinedionas , Ratos , Animais , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Insulina , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/prevenção & controle , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Redução de Peso , Aumento de Peso , Neoplasias/tratamento farmacológico , Hipoglicemiantes/farmacologia
9.
Front Cell Neurosci ; 17: 1132325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025701

RESUMO

Hypoinsulinemia is a pathological consequence of diabetes mellitus that can cause a number of complications of the central and peripheral nervous system. Dysfunction of signaling cascades of insulin receptors under insulin deficiency can contribute to the development of cognitive disorders associated with impaired synaptic plasticity properties. Earlier we have shown that hypoinsulinemia causes a shift of short-term plasticity in glutamatergic hippocampal synapses from facilitation to depression and apparently involves mechanisms of glutamate release probability reduction. Here we used the whole cell patch-clamp recording of evoked glutamatergic excitatory postsynaptic currents (eEPSCs) and the method of local extracellular electrical stimulation of a single presynaptic axon to investigate the effect of insulin (100 nM) on the paired-pulse plasticity at glutamatergic synapses of cultured hippocampal neurons under hypoinsulinemia. Our data indicate that under normoinsulinemia additional insulin enhances the paired-pulse facilitation (PPF) of eEPSCs in hippocampal neurons by stimulating the glutamate release in their synapses. Under hypoinsulinemia, insulin did not have a significant effect on the parameters of paired-pulse plasticity on neurons of PPF subgroup, which may indicate the development of insulin resistance, while the effect of insulin on PPD neurons indicates its ability to recover the form normoinsulinemia, including the increasing probability of plasticity to the control level in of glutamate release in their synapses.

10.
Cell Chem Biol ; 30(9): 1053-1063.e5, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37562406

RESUMO

Type I diabetes (T1D) impairs bone accrual in patients, but the mechanism is unclear. Here in a murine monogenic model for T1D, we demonstrate that diabetes suppresses bone formation resulting in a rapid loss of both cortical and trabecular bone. Single-cell RNA sequencing uncovers metabolic dysregulation in bone marrow osteogenic cells of diabetic mice. In vivo stable isotope tracing reveals impaired glycolysis in diabetic bone that is highly responsive to insulin stimulation. Remarkably, deletion of the insulin receptor reduces cortical but not trabecular bone. Increasing glucose uptake by overexpressing Glut1 in osteoblasts exacerbates bone defects in T1D mice. Conversely, activation of glycolysis by Pfkfb3 overexpression preserves both trabecular and cortical bone mass in the face of diabetes. The study identifies defective glucose metabolism in osteoblasts as a pathogenic mechanism for osteopenia in T1D, and furthermore implicates boosting osteoblast glycolysis as a potential bone anabolic therapy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Osteoblastos/metabolismo , Densidade Óssea , Glicólise
11.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33057655

RESUMO

Heavy alcohol drinking alters glucose metabolism, but the inheritability of this effect of alcohol is not well understood. We used an animal model of preconception alcohol exposure in which adult female rats were given free access to 6.7% alcohol in a liquid diet and water for about 4 weeks, went without alcohol for 3 weeks, and then were bred to generate male and female offspring. Control animals were either ad lib-fed rat chow or pair-fed an isocaloric liquid diet during the time of alcohol-feeding in the experimental animals. Our results show that the female rats fed with alcohol in the liquid diet, but not with the isocaloric liquid diet, prior to conception had an altered stress gene network involving glucose metabolism in oocytes when compared with those in ad lib-fed chow diet controls. The offspring born from preconception alcohol-fed mothers showed significant hyperglycemia and hypoinsulinemia when they were adults. These rats also showed increased levels of inflammatory cytokines and cellular apoptosis in the pancreas, altered insulin production and actions in the liver, and a reduced number of proopiomelanocortin neurons in the hypothalamus. Replenishment of proopiomelanocortin neurons in these animals normalized the abnormal glucose to restore homeostasis. These data suggest that preconception alcohol exposures alter glucose homeostasis by inducing proopiomelanocortin neuronal functional abnormalities. Our findings provide a novel insight into the impact of high doses of alcohol on the female gamete that may cause inheritance of an increased susceptibility to diabetes.


Assuntos
Diabetes Mellitus/induzido quimicamente , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ração Animal , Animais , Apoptose , Glicemia , Citocinas/genética , Citocinas/metabolismo , Dieta , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Pró-Opiomelanocortina/metabolismo , Ratos
12.
Mediterr J Hematol Infect Dis ; 13(1): e2021021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747402

RESUMO

OBJECTIVE: To study the endocrine pancreas' function in transfusion-dependent ß-thalassemia (ß-TDT) patients with a normal glucose tolerance test (NGT) and hypoinsulinemia. In addition, the prospective long-term follow-up using an annual oral glucose tolerance test (OGTT) to detect any abnormality of glucose metabolism. PATIENTS AND METHODS: Seven ß-TDT patients (mean age 22.4 ± 4.2 years) with NGT and inadequate insulin response (hypoinsulinemia) to OGTT were referred for a second opinion to an Italian Centre. RESULTS: The first-phase insulin response (FPIR), expressed as the sum of 1 and 3 minutes insulin, to intravenous glucose tolerance test (IVGTT), was between the 1st and 3rd percentile in two patients and between the 3rd and 10th percentile in five. The results were not associated with ß-cell autoimmunity. After 43 ± 26 months (range 11 - 80 months) of follow-up, two patients developed impaired glucose tolerance (IGT), three both IGT and impaired fasting glucose (IFG) and two overt diabetes mellitus (DM). Interestingly, the patients who developed DM had, at baseline, the lowest value of the insulinogenic index (IGI: 0.08 and 0.25), defined as the ratio of the increment of plasma insulin to plasma glucose during the first 30 minutes after OGTT. Moreover, a significant correlation was found between the IGI at baseline and at follow-up in the patients who developed IGT with or without IFG (R= 0.927; P: 0.023). A significant reduction of Matsuda insulin sensitivity index (ISIM) and Insulin Secretion-Sensitivity Index-2 (ISSI-2) was documented in the study cohort at the diagnosis of IFG, IGT, and DM. There was a significant inverse correlation between ISSI-2 and area under the curve plasma glucose (AUC-PG). CONCLUSIONS: These data demonstrated, for the first time, progressive deterioration in glucose homeostasis in ß-TDT subjects with NGT and hypoinsulinemia and that the ISSI-2 index may be a valuable parameter to identify patients at high risk for developing glucose dysregulation.

13.
J Diabetes Investig ; 10(2): 227-237, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29987871

RESUMO

AIMS/INTRODUCTION: Diabetic animal models have made an enormous contribution to our understanding of the etiology of diabetes and the development of new medications. The aim of the present study was to develop and characterize a novel, non-obese murine strain with spontaneous diabetes - the insulin hyposecretion (ihs) mouse. MATERIALS AND METHODS: During the development of the ICGN.B6-Tns2WT strain as the control for the ICGN-Tns2nph congenital nephrotic strain, diabetic mice were discovered and named ihs mice. Intraperitoneal insulin tolerance test, oral glucose tolerance test and an insulin secretion experiment by the pancreas perfusion system were carried out on ihs mice. The pancreatic islets were examined histologically, and the mRNA expression of pancreatic ß-cell-specific genes or genes associated with monogenic diabetes was examined by RT-qPCR. RESULTS: The ihs mice showed several distinctive diabetes-related characteristics: (i) the onset of diabetes was observed only in the male mice; (ii) there were no differences in insulin content between the ihs and control mice; (iii) impaired insulin secretion was elicited by glucose, potassium chloride and sulfonylureas; (iv) there was a significant reduction of relative ß-cell volume with no signs of inflammation or fibrosis; (v) they showed a normal glycemic response to exogenous insulin; and (vi) the mice were not obese. CONCLUSIONS: The ihs mouse provides a novel murine model of congenital diabetes that shows insulin secretion failure. This model allows not only an analysis of the progression of diabetes, but also the identification of unknown genes involved in insulin secretion.


Assuntos
Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Secreção de Insulina , Células Secretoras de Insulina/patologia , Tensinas/fisiologia , Animais , Glicemia/análise , Diabetes Mellitus Experimental/metabolismo , Feminino , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
14.
J Nutr Biochem ; 71: 132-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349120

RESUMO

Consumption of unhealthy, energy-dense palatable food during early age leads to obesity in children and the onset of obesity during childhood has a profound effect on the reproductive health of women. In this study, the mechanism underlying diet-induced obesity on ovarian dysfunction was studied by exposing rats to cafeteria diet (CAFD) for two different durations. For that purpose, 21-day-old female Sprague Dawley rats were fed ad libitum with a standard diet (control group) and a cafeteria diet (CAFD group) for a period of 20 weeks (20 W) and 32 weeks (32 W). We observed obesity, hyperglycemia, hyperlipidemia, hyperleptinemia and hypoadiponectinemia in CAFD fed groups. Hyperinsulinemia, hypergonadotrophism, hypertestosteronemia and hyperprogesteronemia were observed in the 20 W-CAFD group. Conversely, in the 32 W-CAFD group hypersecretion declined to hyposecretion. The levels of estradiol remained low during both time periods. The duration of estrous cycle was extended in the CAFD fed rats. The ovary weight was higher in the 20 W-CAFD fed rats but it was drastically reduced over a longer duration cafeteria diet feeding. In the 20 W-CAFD fed rats, the protein levels of LHR, StAR, CYP11A1, 3ß-HSD and 17ß-HSD were increased but FSHR and CYP19A1 levels were decreased in the ovary. On the other hand, gonadotropin receptor and the protein levels of steroidogenic enzymes were decreased in the ovary of 32 W-CAFD fed rats. We conclude that the duration of energy-dense diet consumption has differential regulatory mechanism in altering the ovarian steroid production. In 20 W-CAFD fed rats, hypergonadotropic condition was observed whereas, 32 W-CAFD consumption induced hypogonadotropic hypogonadism.


Assuntos
Dieta/efeitos adversos , Obesidade/etiologia , Doenças Ovarianas/metabolismo , Doenças Ovarianas/fisiopatologia , Ração Animal , Animais , Ciclo Estral/fisiologia , Feminino , Gonadotropinas/sangue , Lipídeos/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia , Tamanho do Órgão , Obesidade Infantil , Ratos Sprague-Dawley , Receptores da Gonadotropina/metabolismo , Esteroides/metabolismo , Fatores de Tempo
15.
J Endocrinol ; 237(1): 59-71, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29439088

RESUMO

Caloric restriction (CR) is the only environmental intervention with robust evidence that it extends lifespan and delays the symptoms of aging, but its mechanisms are incompletely understood. Based on the prolonged longevity of knockout models, it was hypothesized that the insulin-IGF pathway could be a target for developing a CR mimic. This study aimed to test whether CR has additive effects on glucose homeostasis and beta-cell function in mice with reduced insulin gene dosage. To study models with a range of basal insulin levels, wild-type C57BL/6J and mice on an Ins2-/- background, were put on 8 weeks of 40% CR at various ages. Both male and female mice rapidly lost weight due to a reduced WAT mass. Glucose tolerance was improved and fasting glucose levels were reduced by CR in both wild type and 45- and 70-week-old Ins2-/- mice. The effects of CR and reduced insulin on glucose tolerance were non-additive in 20-week-old mice. Interestingly, mice on CR generally exhibited an inability to further depress blood glucose after insulin injection, pointing to possible alterations in insulin sensitivity. In conclusion, our results demonstrate that CR can cause weight loss in the context of reduced insulin production, but that CR-improved glucose homeostasis does not occur near the 'insulin floor' in young mice. Collectively, these data shed further light on the relationships between CR, insulin and glucose homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Restrição Calórica/métodos , Dosagem de Genes/fisiologia , Glucose/metabolismo , Insulina/genética , Tecido Adiposo/crescimento & desenvolvimento , Animais , Células Cultivadas , Metabolismo Energético/genética , Feminino , Glucose/farmacologia , Insulina/metabolismo , Resistência à Insulina/genética , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Tempo , Redução de Peso/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-28164040

RESUMO

Dermatophytosis is one of the most common human infections affecting both immunocompetent individuals and immunocompromised patients, in whom the disease is more aggressive and can reach deep tissues. Over the last decades, cases of deep dermatophytosis have increased and the dermatophyte-host interplay remains poorly investigated. Pattern recognition molecules, such as Toll-like receptors (TLR), play a crucial role against infectious diseases. However, there has been very little research reported on dermatophytosis. In the present study, we investigated the role of TLR2 during the development of experimental deep dermatophytosis in normal mice and mice with alloxan-induced diabetes mellitus, an experimental model of diabetes that exhibits a delay in the clearance of the dermatophyte, Trichophyton mentagrophytes (Tm). Our results demonstrated that inoculation of Tm into the footpads of normal mice increases the expression of TLR2 in CD115+Ly6Chigh blood monocytes and, in hypoinsulinemic-hyperglycemic (HH) mice infected with Tm, the increased expression of TLR2 was exacerbated. To understand the role of TLR2 during the development of murine experimental deep dermatophytosis, we employed TLR2 knockout mice. Tm-infected TLR2-/- and TLR2+/+ wild-type mice exhibited similar control of deep dermatophytic infection and macrophage activity; however, TLR2-/- mice showed a noteworthy increase in production of IFN-γ, IL-10, and IL-17, and an increased percentage of splenic CD25+Foxp3+ Treg cells. Interestingly, TLR2-/- HH-Tm mice exhibited a lower fungal load and superior organization of tissue inflammatory responses, with high levels of production of hydrogen peroxide by macrophages, alongside low TNF-α and IL-10; high production of IL-10 by spleen cells; and increased expansion of Tregs. In conclusion, we demonstrate that TLR2 diminishes the development of adaptive immune responses during experimental deep dermatophytosis and, in a diabetic scenario, acts to intensify a non-protective inflammatory response.


Assuntos
Complicações do Diabetes , Tinha/imunologia , Receptor 2 Toll-Like/deficiência , Trichophyton/imunologia , Animais , Contagem de Colônia Microbiana , Citocinas/metabolismo , Modelos Animais de Doenças , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia
17.
Cell Biosci ; 6: 41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293546

RESUMO

BACKGROUND: Concerted hormone secretion is essential for glucose homeostasis and growth. The oocyte testis gene 1 (Otg1) has limited information in mammals before. Human OTG1 has been identified as an antigen associated with cutaneous T cell lymphoma, while worm Otg1 is recently reported to be a vesicle trafficking regulator in neurons. To understand the physiological role of Otg1 and its potential relation to hormone secretion, we characterized a mutation caused by the piggyBac transposon (PB) insertion in mice. RESULTS: Oocyte testis gene 1 encodes a Golgi localized protein that is expressed with a broad tissue distribution in mice. The PB insertion effectively blocks Otg1 expression, which results in postnatal lethality, growth retardation, hypoglycemia and improved insulin sensitivity in mice. Otg1 mutants exhibit decreased levels of insulin, leptin and growth hormone in the circulation and reduced hepatic IGF-1 expression. Decreased expression of Otg1 in pituitary GH3 cells causes reduced grow hormone expression and secretion, as well as the traffic of the VSVG protein marker. CONCLUSIONS: Our data support the hypothesis that Otg1 impacts hormone secretion by regulating vesicle trafficking. These results revealed a previously unknown and important role of Otg1 in hormone secretion and glucose homeostasis in mammals.

18.
Springerplus ; 5(1): 1299, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547673

RESUMO

Strenuous exercise following overnight fasting increases fat oxidation during exercise, which can modulate training adaptation. However, such exercise induces muscle protein catabolism by decreasing blood insulin concentrations and increasing amino acid oxidation during the exercise. Leucine-enriched essential amino acids (LEAAs) enhance muscle protein synthesis (MPS) at rest and after exercise. However, it remains to be clarified if the co-ingestion of carbohydrate with LEAAs induces an additional increase in MPS, particularly in a hypoinsulinemic state induced by strenuous exercise. Eight-week-old male Sprague-Dawley rats were made to perform strenuous jump exercise (height 35 cm, 200 jumps, 3-s intervals), after which they ingested distilled water and 1 g/kg LEAAs with or without 1 g/kg of glucose. The fractional synthesis rate was determined by measuring the incorporation of l-[ring-(2)H5]-phenylalanine into skeletal muscle protein. Immediately after the exercise, plasma insulin concentration was significantly lower than that at the basal level. Co-ingestion of glucose with LEAAs alleviated the reduction in plasma insulin concentration, while LEAA ingestion alone did not. LEAA administration with or without glucose led to a higher MPS compared with water administration (P < 0.05). However, the co-ingestion of glucose with LEAAs did not induce further increases in MPS compared with LEAA ingestion alone. Thus, the co-ingestion of glucose with LEAAs does not additionally increase MPS under a strenuous exercise-induced hypoinsulinemic state when glucose is co-ingested with a dose of LEAAs that maximally stimulates MPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA