Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Astron Astrophys ; 6502021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34321677

RESUMO

We report the first detection in space of the single deuterated isotopologue of methylcyanoacetylene, CH2DC3N. A total of fifteen rotational transitions, with J = 8-12 and Ka = 0 and 1, were identified for this species in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telescope. The observed frequencies were used to derive for the first time the spectroscopic parameters of this deuterated isotopologue. We derive a column density of (8.0 ± 0.4) × 1010 cm-2. The abundance ratio between CH3C3N and CH2DC3N is ∼22. We also theoretically computed the principal spectroscopic constants of 13C isotopologues of CH3C3N and CH3C4H and those of the deuterated isotopologues of CH3C4H for which we could expect a similar degree of deuteration enhancement. However, we have not detected either CH2DC4H nor CH3C4D nor any 13C isotopologue. The different observed deuterium ratios in TMC-1 are reasonably accounted for by a gas phase chemical model where the low temperature conditions favor deuteron transfer through reactions with H2D+.

2.
Astron Astrophys ; 6462021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33824540

RESUMO

We report the detection in TMC-1 of the protonated form of C3S. The discovery of the cation HC3S+ was carried through the observation of four harmonically related lines in the Q band using the Yebes 40m radiotelescope, and is supported by accurate ab initio calculations and laboratory measurements of its rotational spectrum. We derive a column density N(HC3S+) = (2.0 ± 0.5) × 1011 cm-2, which translates to an abundance ratio C3S/HC3S+ of 65 ± 20. This ratio is comparable to the CS/HCS+ ratio (35 ± 8) and is a factor of about ten larger than the C3O/HC3O+ ratio previously found in the same source. However, the abundance ratio HC3O+/HC3S+ is 1.0 ± 0.5, while C3O/C3S is just ~ 0.11. We also searched for protonated C2S in TMC-1, based on ab initio calculations of its spectroscopic parameters, and derive a 3σ upper limit of N(HC2S+)≤ 9×1011 cm-2 and a C2S/HC2S+ ≥ 60. The observational results are compared with a state-of-the-art gas-phase chemical model and conclude that HC3S+ is mostly formed through several pathways: proton transfer to C3S, reaction of S+ with c-C3H2, and reaction between neutral atomic sulfur and the ion C3H+ 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA