Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Clin Genet ; 105(3): 302-307, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38018277

RESUMO

The evolutionarily conserved mevalonate pathway plays an important role in the synthesis of cholesterol and isoprenoid compounds. Mevalonate kinase (MVK) and phosphomevalonate kinase (PMVK) enzymes regulate key rate-limiting steps in this pathway by sequentially phosphorylating mevalonic acid to yield downstream metabolites that regulate protein prenylation and cell signaling. Biallelic pathogenic variants in MVK cause a spectrum of rare autoinflammatory disorders that encompass milder forms of hyper-IgD syndrome (HIDS) at one end and the more severe mevalonic aciduria on the other. In contrast, pathogenic variants reported in PMVK are heterozygous and associated with porokeratosis, a skin disorder with no systemic manifestations. Recently, biallelic variants in PMVK were reported as a cause for an autoinflammatory disorder for the first time in two unrelated patients. In this study, we describe a child with recurrent arthritis and a HIDS-like phenotype harboring a novel homozygous variant c.398 C>T (p.Ala133Val) in PMVK. Mononuclear cells isolated from the patient showed significantly elevated production of interleukin 1ß, a key cytokine that shapes the inflammatory response in HIDS. Protein modeling studies suggested potential defects in PMVK enzyme activity. These results posit a further expanding of the genotypic spectrum of autoinflammatory disease to include biallelic PMVK variants.


Assuntos
Deficiência de Mevalonato Quinase , Criança , Humanos , Genótipo , Deficiência de Mevalonato Quinase/genética , Deficiência de Mevalonato Quinase/metabolismo , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
2.
Brain Behav Immun ; 123: 411-421, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343106

RESUMO

Interleukin-1ß (IL1), a pleiotropic cytokine, is involved in sleep regulation, tumor ontogeny, and immune responses. IL1 receptor adaptor proteins, including the IL1 receptor accessory protein (AcP), and its neuron-specific isoform, AcPb, are required for IL1 signaling. The AcPb isoform is resultant from alternate splicing of the AcP transcript. Our previous studies using AcPb null (AcPb-/-) mice characterized its participation in sleep regulation and emergent neuronal/glial network properties. Here, we investigated the impact of acute sleep disruption (SD) on brain cancer-related pathways in wild-type (WT) and AcPb-/- mice, employing RNA sequencing methods. In WT mice, SD increased AcPb mRNA levels, but not AcP mRNA, confirming prior similar work in rats. Transcriptome and pathway enrichment analyses demonstrated significant alterations in cancer, immune, and viral disease-related pathways in WT mice after SD, which were attenuated in AcPb-/- mice including multiple upregulated Src phosphorylation-signaling-dependent genes associated with cancer progression and metastasis. Our RNAseq findings, were analyzed within the context of The Cancer Genome Atlas Program (TCGA) data base; revealing an upregulation of sleep- and cancer-linked genes (e.g., IL-17B, IL-17RA, LCN2) across various tumors, including brain tumors, compared to normal tissues. Sleep-linked factors, identified through TCGA analyses, significantly impact patient prognosis and survival, particularly in low-grade glioma (LGG) and glioblastoma multiforme (GBM) patients. Overall, our findings suggest that SD promotes a pro-tumor environment through AcPb-modulated pathways.

3.
Cell Commun Signal ; 22(1): 363, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010112

RESUMO

BACKGROUND: We previously identified Il17RB, a member of the IL17 superfamily, as a candidate marker gene for endometrial aging. While IL17RB has been linked to inflammation and malignancies in several organ systems, its function in the endometrium has not been investigated and is thus poorly understood. In the present study, we performed a functional analysis of this receptor with the aim of determining the effects of its age-associated overexpression on the uterine environment. METHODS: We analyzed IL17RB-related signaling pathways and downstream gene expression in an immortalized human endometrial glandular epithelial cell line ("hEM") forced to express the receptor via lentiviral transduction ("IL17RB-hEM"). We also prepared endometrial organoids from human endometrial tissue sourced from hysterectomy patients ("patient-derived EOs") and exposed them to cytokines that are upregulated by IL17RB expression to investigate changes in organoid-forming capacity and senescence markers. We analyzed RNA-seq data (GEO accession number GSE132886) from our previous study to identify the signaling pathways associated with altered IL17RB expression. We also analyzed the effects of the JNK pathway on organoid-forming capacity. RESULTS: Stimulation with interleukin 17B enhanced the NF-κB pathway in IL17RB-hEM, resulting in significantly elevated expression of the genes encoding the senescence associated secretory phenotype (SASP) factors IL6, IL8, and IL1ß. Of these cytokines, IL1ß inhibited endometrial organoid growth. Bioinformatics analysis showed that the JNK signaling pathway was associated with age-related variation in IL17RB expression. When IL17RB-positive cells were cultured in the presence of IL17B, their organoid-forming capacity was slightly but non-significantly lower than in unexposed IL17RB-positive cells, but when IL17B was paired with a JNK inhibitor (SP600125), it was restored to control levels. Further, IL1ß exposure significantly reduced organoid-forming capacity and increased p21 expression in endometrial organoids relative to non-exposure (control), but when IL1ß was paired with SP600125, both indicators were restored to levels comparable to the control condition. CONCLUSIONS: We have revealed an association between IL17RB, whose expression increases in the endometrial glandular epithelium with advancing age, and cellular senescence. Using human endometrial organoids as in vitro model, we found that IL1ß inhibits cell proliferation and leads to endometrial senescence via the JNK pathway.


Assuntos
Senescência Celular , Endométrio , Receptores de Interleucina-17 , Transdução de Sinais , Humanos , Feminino , Endométrio/metabolismo , Endométrio/citologia , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Senescência Celular/genética , Organoides/metabolismo , Linhagem Celular
4.
Immunol Invest ; 53(3): 450-463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318856

RESUMO

AIM: To evaluate the serum levels of HMGB1, IL1ß, and α-klotho in COVID-19 patients with different disease severity, investigate their association with clinicopathological parameters, and to assess HMGB1 rs1045411 polymorphism and its relation with clinical severity. METHODS: 120 COVID-19 patients (89 critically ill, 15 severe, and 16 moderately severe) along with 80 healthy control were enrolled.The serum levels of HMGB1,IL1ß, and α-klotho were determined by ELISA. The HMGB1 rs1045411 polymorphism was detected by RT- PCR. RESULTS: The serum levels of HMGB1, IL1ß, and α-klotho were significantly higher in critically ill COVID-19 patients compared to other groups. The HMGB1rs1045411 polymorphism revealed a significant decrease in the percentage of T/T genotypes in COVID-19 patients compared to controls. The (ROC) analysis showed moderate diagnostic potential for serum HMGB1, IL1ß, and α-klotho. CONCLUSION: The serum HMGB1, IL1ß, and α-klotho may be severity markers and promising therapeutic targets for COVID-19 patients.


Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Estado Terminal , Proteína HMGB1/genética , Interleucina-1beta/genética , Polimorfismo Genético
5.
Lasers Med Sci ; 39(1): 176, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976032

RESUMO

Laser therapy has shown effectiveness in promoting wound healing by influencing various physiological factors such as blood flow, cytokines, histamine, nerve signals, lymphocyte function, tissue oxygenation, and cell growth. This study aims to evaluate the therapeutic efficacy of Photobiomodulation (PBM) treatment, by using diode laser, in modifying the levels of interleukin-1 beta (IL1ß) and transforming growth factor beta-1 (TGFß-1) in patients diagnosed with aphthous stomatitis. A before-after interventional design was conducted over 10 months with 20 subjects. Data on demographic details and serum concentrations of IL1ß and TGFß-1 were collected pre-treatment and on Days 3 and 7 post-treatments. The intervention involved a single session of four 30-second applications of a QuickLase dual-wavelength laser operating at 980 nm. Results show significant reductions in IL1ß and TGFß-1 levels after 7 days of treatment, indicating a time-dependent effect of PBM therapy on these inflammatory markers. The findings suggest that PBM therapy holds promise as an intervention for reducing inflammation associated with aphthous stomatitis.


Assuntos
Interleucina-1beta , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Estomatite Aftosa , Fator de Crescimento Transformador beta1 , Humanos , Interleucina-1beta/sangue , Terapia com Luz de Baixa Intensidade/métodos , Adulto , Feminino , Masculino , Fator de Crescimento Transformador beta1/sangue , Fator de Crescimento Transformador beta1/metabolismo , Estomatite Aftosa/radioterapia , Estomatite Aftosa/terapia , Lasers Semicondutores/uso terapêutico , Pessoa de Meia-Idade , Adulto Jovem
6.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542124

RESUMO

Inflammation and mucus production are prevalent characteristics of chronic respiratory conditions, such as asthma and chronic chronic obstructive pulmonary disease (COPD). Biological co-factors, including bacteria, viruses, and fungi, may exacerbate these diseases by activating various pathways associated with airway diseases. An example is the fungus Pneumocystis, which is linked to severe COPD in human patients. Recent evidence has demonstrated that Pneumocystis significantly enhanced inflammation and mucus hypersecretion in a rat model of elastase-induced COPD. The present study specifically aims to investigate two additional aspects associated with the pathology induced by Pneumocystis infection: inflammation and collagen deposition around airways. To this end, the focus was to investigate the role of the IL-1ß pro-inflammatory pathway during Pneumocystis infection in COPD rats. Several airway pathology-related features, such as inflammation, mucus hypersecretion, and fibrosis, were evaluated using histological and molecular techniques. COPD animals infected with Pneumocystis exhibited elevated inflammation levels, including a synergistic increase in IL-1ß and Cox-2. Furthermore, protein levels of the IL-1ß-dependent transcription factor cAMP response element-binding (CREB) showed a synergistic elevation of their phosphorylated version in the lungs of COPD animals infected with Pneumocystis, while mucus levels were notably higher in the airways of COPD-infected animals. Interestingly, a CREB responsive element (CRE) was identified in the Muc5b promoter. The presence of CREB in the Muc5b promoter was synergistically increased in COPD animals infected with Pneumocystis compared to other experimental groups. Finally, an increment of deposited collagen was identified surrounding the airways of COPD animals infected with Pneumocystis compared with the other experimental animal groups and correlated with the increase of Tgfß1 mRNA levels. These findings emphasize the role of Pneumocystis as a potential biological co-factor in chronic respiratory diseases like COPD or asthma, warranting new perspectives in the treatment of chronic respiratory diseases.


Assuntos
Asma , Pneumocystis , Pneumonia por Pneumocystis , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Asma/metabolismo , Muco/metabolismo , Inflamação/metabolismo , Colágeno/metabolismo
7.
Neurobiol Dis ; 187: 106297, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717661

RESUMO

Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with pro-inflammatory biomarkers TNFα, IL-1ß, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex tissues. In an experimental MTLE model, hippocampal Piezo1 and cytokine expression levels were increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1ß, and Nf-kb in the hippocampal foci. Next, by combining RNAscope with immunohistochemistry, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The combined examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1ß upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 brain cell-mechanobiology and neuro-inflammatory cell remodeling. The precise functional mechanisms regulating this interplay in disease conditions warrant further investigation.

8.
J Neurosci Res ; 100(5): 1239-1253, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184325

RESUMO

Adolescent stress predisposes individuals to increased risk for anxiety and depression in adulthood. The stress response is mediated by the glucocorticoid receptor (GR) via regulation of GR-responsive genes involved in brain reaction to stress. Although dysregulation of GR in depression is well documented, this is the first study investigating the role of GRα isoforms in pathogenesis of depression. We exposed adolescent male and female C57BL/6J mice to chronic unpredictable stress (CUS) for 12 days starting at postnatal day 28 (PND28). Tests evaluating anxiety and depressive-like behaviors were performed at PND70. We analyzed corticosterone concentrations in serum, levels of GRα isoforms (95, 67, 50, 40, and 25 kDa), and mRNA levels of GR-responsive genes (GR, FKBP5, BDNF, and IL-1ß) in the hippocampus and the prefrontal cortex (PFC). CUS increased anxiety and depressive-like behavior in adult animals of both sexes, but did not affect corticosterone serum levels, 95 and 67 kDa GR isoforms. However, the levels of shorter GRα isoforms (50, 40, and 25 kDa) were altered in adult mice underwent CUS, in sex- and brain structure-specific way. Changes in gene expression revealed that female depressive-like behavior could be related to increased levels of IL-1ß in hippocampus and reduced BDNF levels in both hippocampus and PFC. However, in males, adolescent CUS increased expression of GR in adult hippocampus and BDNF in PFC. These findings suggest that adolescent stress altered levels of GRα isoforms, especially those with lower molecular weight, in sex- and tissue-specific ways, contributing to anxiety and depression in adult mice.


Assuntos
Corticosterona , Receptores de Glucocorticoides , Animais , Ansiedade/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Feminino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/genética , Estresse Psicológico/metabolismo
9.
Neuroimmunomodulation ; 29(2): 135-142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34583355

RESUMO

INTRODUCTION: In recent years, according to the literature, the problem of mild traumatic brain injury (mTBI) has become more and more urgent. Compared to moderate to severe craniocerebral trauma, mTBI occurs in a far greater number of people. The delayed sequelae caused by a single mTBI or multiple mTBIs are a significant public health problem. METHODS: A weight-drop model was used for the formation of mTBI. A metal rod weighing 337 g with a blunt tip of 3 mm diameter was uplifted at 8 cm height and held by a lever. The trauma was created by lowering the lever and the rod and free-dropping onto the rat skull. In the cerebral cortex of experimental animals, we analyzed the level of microglial activity (Iba-1-positive system) and the expression of pro-inflammatory markers (IL1ß, IL6, and CD86). Also, the expression level of the endocannabinoid system receptor (cannabinoid receptor type 1 [CB1]) was assessed in brain samples. RESULTS: Experiments have shown that mTBI increases (1) the amount of microglia (iba-1) activated by the pro-inflammatory pathway (CD86); (2) the level of pro-inflammatory cytokines IL1ß and IL6; and (3) CB1R activity. CONCLUSION: Overall, the results of this study indicate that mTBI induces a sustained neuroinflammatory response.


Assuntos
Concussão Encefálica , Animais , Encéfalo/metabolismo , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Citocinas/metabolismo , Humanos , Microglia/metabolismo , Doenças Neuroinflamatórias , Ratos
10.
Mol Biol Rep ; 49(6): 4759-4768, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332413

RESUMO

BACKGROUND: One of the main impacts of Toxoplasma gondii infection occurs during pregnancy and is related to the vertical transmission of the parasite (congenital toxoplasmosis), which can cause severe clinical outcomes and fetal death. During acute infection, in order to control the rapid replication of tachyzoites, different host immune response genes are activated, and these include cytokine-encoding genes. Considering that polymorphisms in cytokine genes may increase susceptibility to vertical transmission of T. gondii by determining the immune status of the pregnant woman, this study evaluated the influence of polymorphisms of tumor necrosis factor alpha (TNFα) rs1799964 (- 1031) and interleukin 1 beta (IL1ß) rs16944 (- 511) genes on gestational toxoplasmosis and on the vertical transmission of the parasite and verified the allele and genotype frequency of these polymorphisms in pregnant patients whose respective newborn did or did not present clinical abnormalities suggestive of congenital toxoplasmosis. METHODS AND RESULTS: A total of 204 pregnant patients with (n = 114) or without (n = 90) infection by T. gondii were enrolled. No associations were found involving the polymorphisms rs1799964 (- 1031) of the TNFα gene and rs16944 (- 511) of the IL1ß gene with the increased chance of T. gondii infection during pregnancy. However, it was observed that the maternal TT genotype referring to the polymorphism of the TNFα gene seems to influence the vertical transmission of the parasite (P = 0.01; χ2 = 6.05) and the presence of clinical manifestation in newborns from pregnancies with acute toxoplasmosis (P = 0.007; χ2 = 9.68). CONCLUSION: The TNFα rs1799964 TT genotype may act as a susceptibility factor for the vertical transmission of parasite and for the presence of clinical signs in newborns from pregnant women with acute toxoplasmosis.


Assuntos
Complicações Parasitárias na Gravidez , Toxoplasma , Toxoplasmose Congênita , Fator de Necrose Tumoral alfa , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Gravidez , Complicações Parasitárias na Gravidez/genética , Toxoplasmose Congênita/genética , Fator de Necrose Tumoral alfa/genética
11.
Ecotoxicol Environ Saf ; 237: 113522, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447474

RESUMO

Many host-microbiota interactions depend on the recognition of microbial constituents by toll-like receptors of the host. The impacts of these interactions on host health can shape the hosts response to environmental pollutants such as nanomaterials. Here, we assess the role of toll-like receptor 2 (TLR2) signaling in the protective effects of colonizing microbiota against silver nanoparticle (nAg) toxicity to zebrafish larvae. Zebrafish larvae were exposed to nAg for two days, from 3 to 5 days post-fertilization. Using an il1ß-reporter line, we first characterized the accumulation and particle-specific inflammatory effects of nAg in the total body and intestinal tissues of the larvae. This showed that silver gradually accumulated in both the total body and intestinal tissues, yet specifically caused particle-specific inflammation on the skin of larvae. Subsequently, we assessed the effects of microbiota-dependent TLR2 signaling on nAg toxicity. This was done by comparing the sensitivity of loss-of-function zebrafish mutants for TLR2, and each of the TLR2-adaptor proteins MyD88 and TIRAP (Mal), under germ-free and microbially-colonized conditions. Irrespective of their genotype, microbially-colonized larvae were less sensitive to nAg than their germ-free siblings, supporting the previously identified protective effect of microbiota against nAg toxicity. Under germ-free conditions, tlr2, myd88 and tirap mutants were equally sensitive to nAg as their wildtype siblings. However, when colonized by microbiota, tlr2 and tirap mutants were more sensitive to nAg than their wildtype siblings. The sensitivity of microbially-colonized myd88 mutants did not differ significantly from that of wildtype siblings. These results indicate that the protective effect of colonizing microbiota against nAg-toxicity to zebrafish larvae involves TIRAP-dependent TLR2 signaling. Overall, this supports the conclusion that host-microbiota interactions affect nanomaterial toxicity to zebrafish larvae.


Assuntos
Nanopartículas Metálicas , Microbiota , Animais , Larva , Nanopartículas Metálicas/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Prata/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557876

RESUMO

Although 3-aminopropyl functionalized magnesium phyllosilicate nanoparticles (hereafter aminoclay nanoparticles, ACNs) are well-known nanomaterials employed as drug carriers, their effects on immune cells remain unclear. To address this issue, we explored murine dendritic cells (DCs) as these cells belong to the innate arm of the immune system and function as antigen-presenting cells to elicit adaptive immune responses. We examined the in vitro effects of ACNs on DCs isolated from B6 mice. ACN treatment significantly down-regulated the expression of inflammasome-related markers, including NLRP3, caspase-1, and IL1ß. The ACNs-induced anti-inflammatory DC phenotype was further confirmed by down-regulation of the AKT/mTOR/HIF1α signaling pathway. Such anti-inflammatory effects of ACNs on DCs occurred independently of DC subtypes. To document the effects of ACNs on DCs more clearly, we examined their anti-inflammatory effects on lipopolysaccharide (LPS)-activated DCs. As expected, excessive inflammatory responses (increased mitochondrial ROS and Th1-type cytokines such as IL12 and IL1ß) of LPS-activated DCs were dramatically attenuated by ACN treatment. Furthermore, ACNs down-regulated IFNγ production by antigen-specific CD4+ T cells, which is consistent with a reduced inflammatory phenotype of DCs. Overall, our results provide support for employing ACNs as drug delivery materials with therapeutic potential to control inflammatory disorders.


Assuntos
Lipopolissacarídeos , Nanopartículas , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Imunidade , Células Dendríticas
13.
Glia ; 69(11): 2618-2643, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310753

RESUMO

Neurotensin (NT) acts as a primary neurotransmitter and neuromodulator in the CNS and has been involved in a number of CNS pathologies including epilepsy. NT mediates its central and peripheral effects by interacting with the NTSR1, NTSR2, and Sort1/NTSR3 receptor subtypes. To date, little is known about the precise expression of the NT receptors in brain neural cells and their regulation in pathology. In the present work, we studied the cellular distribution of the NTSR2 protein in the rat hippocampus and questioned whether its expression was modulated in conditions of neuroinflammation using a model of temporal lobe epilepsy induced by pilocarpine. This model is characterized by a rapid and intense inflammatory reaction with reactive gliosis in the hippocampus. We show that NTSR2 protein is expressed in hippocampal astrocytes and its expression increases together with astrocyte reactivity following induction of status epilepticus. NTSR2 immunoreactivity is also increased in astrocytes proximal to blood vessels and their end-feet, and in endothelial cells. Proinflammatory factors such as IL1ß and LPS induced NTSR2 mRNA and protein in cultured astroglial cells. Antagonizing NTSR2 with SR142948A decreased NTSR2 expression as well as astroglial reactivity. Together, our results suggest that NTSR2 is implicated in astroglial and gliovascular inflammation and that targeting the NTSR2 receptor may open new avenues in the regulation of neuroinflammation in CNS diseases.


Assuntos
Astrócitos , Pilocarpina , Animais , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Doenças Neuroinflamatórias , Pilocarpina/metabolismo , Pilocarpina/toxicidade , Ratos , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Convulsões/metabolismo
14.
Microb Pathog ; 158: 105072, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34192597

RESUMO

Toxoplasma gondii (T. gondii) is an intracellular parasitic protozoan infecting homoeothermic animals and about a third of the world's population. Inflammasomes are intracellular multi-protein complex, which are activated by many factors. Inflammasomes are activated during toxoplasmosis; however, there are a lot of obscure aspects. THP-1 monocyte cells were converted to M0 macrophages by PMA and treated by 100 µg/mL soluble total Ag (STAg) derived from T. gondii strain RH for two time points 3 h and 24 h. After total RNA extraction and cDNA synthesis, the expression pattern of NLRP1, NLRP3, NLRC4, AIM2, IL1ß, and IL18 was evaluated by relative real-time PCR. In addition, the cytokine release of IL1ß and TNFα was evaluated in the supernatant of each well. The results showed statistically significant time-dependent overexpression of inflammasomes. NLRP1 and NLRP3 showed the higher and lower expression, respectively, during 3 h and 24 h after exposure. Both IL1ß and IL18 downregulated 3 h after exposure. IL18 presented statistically significant upregulation after 24 h, but IL1ß showed statistically significant downregulation after 24 h. The release of IL1ß increased after 3 h, but it slightly decreased during 24 h after exposure. The concentration of TNFα showed an insignificant decrease compared to control, while it increased during 24 h after exposure. Taken together, this study suggested that T. gondii STAg induces NLRP1 more than NLRP3, NLRC4, and AIM2. Our findings also proposed that T. gondii STAg downregulates the gene expression of IL1ß, but increases the release of this cytokine. It seems that Toxoplasma STAg probably increase the release of IL1ß via activating NLRPs and AIM2 to cleave pro-caspase 1 to caspase 1 that leads to conversion of pro IL1ß to mature IL1ß.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Humanos , Inflamassomos/genética , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR , Células THP-1 , Toxoplasma/genética
15.
Adv Exp Med Biol ; 1287: 183-200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034033

RESUMO

Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.


Assuntos
Neoplasias da Mama , Receptores Notch/metabolismo , Transdução de Sinais , Microambiente Tumoral , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Neovascularização Patológica , Comunicação Parácrina
16.
Int J Mol Sci ; 22(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920431

RESUMO

Corticotropin-releasing factor (CRF) in the brain acts on physiological and pathophysiological modulation of the hepatobiliary system. Central CRF administration aggravates experimental acute liver injury by decreasing hepatic blood flow. Conversely, minimal evidence is available regarding the effect of centrally acting CRF on hepatic lipid metabolism and inflammation. We examined whether central CRF affects hepatic lipid metabolism and inflammation-related gene expression in rats. Male Long Evans rats were intracisternally injected with CRF (10 µg) or saline. Rats were sacrificed 2 h, 6 h, and 24 h after the CRF injection, the liver was isolated, and mRNA was extracted. Next, hepatic lipid metabolism and inflammation-related gene expression were examined. Hepatic SREBF1 (sterol regulatory element-binding transcription factor 1) mRNA levels were significantly increased 6 h and 24 h after intracisternal CRF administration when compared with those in the control group. Hepatic TNFα and IL1ß mRNA levels increased significantly 6 h after intracisternal CRF administration. Hepatic sympathectomy or guanethidine treatment, not hepatic branch vagotomy or atropine treatment, inhibited central CRF-induced increase in hepatic SREBF1, TNFα and IL1ß mRNA levels. These results indicated that central CRF affects hepatic de novo lipogenesis and inflammation-related gene expression through the sympathetic-noradrenergic nervous system in rats.


Assuntos
Hormônio Liberador da Corticotropina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatite/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Animais , Hepatite/patologia , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Masculino , Ratos , Ratos Long-Evans
17.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067023

RESUMO

Classical inflammation in response to bacterial, parasitic, or viral infections such as HIV includes local recruitment of neutrophils and macrophages and the production of proinflammatory cytokines and chemokines. Proposed biomarkers of organ integrity in Alcohol Use Disorders (AUD) include elevations in peripheral plasma levels of proinflammatory proteins. In testing this proposal, previous work included a group of human immunodeficiency virus (HIV)-infected individuals as positive controls and identified elevations in the soluble proteins TNFα and IP10; these cytokines were only elevated in AUD individuals seropositive for hepatitis C infection (HCV). The current observational, cross-sectional study evaluated whether higher levels of these proinflammatory cytokines would be associated with compromised brain integrity. Soluble protein levels were quantified in 86 healthy controls, 132 individuals with AUD, 54 individuals seropositive for HIV, and 49 individuals with AUD and HIV. Among the patient groups, HCV was present in 24 of the individuals with AUD, 13 individuals with HIV, and 20 of the individuals in the comorbid AUD and HIV group. Soluble protein levels were correlated to regional brain volumes as quantified with structural magnetic resonance imaging (MRI). In addition to higher levels of TNFα and IP10 in the 2 HIV groups and the HCV-seropositive AUD group, this study identified lower levels of IL1ß in the 3 patient groups relative to the control group. Only TNFα, however, showed a relationship with brain integrity: in HCV or HIV infection, higher peripheral levels of TNFα correlated with smaller subcortical white matter volume. These preliminary results highlight the privileged status of TNFα on brain integrity in the context of infection.


Assuntos
Alcoolismo/sangue , Infecções por HIV/sangue , Hepatite C/sangue , Fator de Necrose Tumoral alfa/sangue , Substância Branca/patologia , Alcoolismo/complicações , Comorbidade , Feminino , Infecções por HIV/complicações , Hepatite C/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Análise de Componente Principal , Solubilidade
18.
J Cell Biochem ; 121(3): 2606-2617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680324

RESUMO

Cementum regeneration is considered the gold standard for the treatment of periodontitis. As one of the most important primary proinflammatory cytokines, interleukin 1ß (IL1ß) plays an essential role during the early stage of periodontitis and its amounts simultaneously increase dramatically during this stage. Though promising, the differentiation of cementoblasts upon IL1ß-induced inflammation of the microenvironment and the relative interaction mechanism are still unknown. Here, we found that IL1ß inhibited cementoblast differentiation and microRNA-325-3p (miR-325-3p) was increased during IL1ß-stimulated cementoblasts. Bioinformatics analysis and luciferase reporter assay demonstrated miR-325-3p targeted runt-related transcription factor 2 directly. Transfection of miR-325-3p suppressed cementoblast differentiation in vitro and the formation of cementum-like tissues in vivo. The inhibitor of miR-325-3p could mitigate the above effects induced by IL1ß. Accordingly, our finding suggests a critical role of miR-325-3p in linking inflammation to impaired cementum regeneration and provides a potential possibility for applying miR-325-3p inhibitors in the treatment of periodontitis-related bone loss.


Assuntos
Diferenciação Celular , Cementogênese , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cemento Dentário/citologia , Regulação da Expressão Gênica , Interleucina-1beta/farmacologia , MicroRNAs/genética , Animais , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Cemento Dentário/efeitos dos fármacos , Cemento Dentário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Cancer Immunol Immunother ; 69(5): 813-824, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32055920

RESUMO

Despite significant therapeutic improvements chronic lymphocytic leukemia (CLL) remains an incurable disease and there is a persistent pursuit of new treatment alternatives. Lurbinectedin, a selective inhibitor of active transcription of protein-coding genes, is currently in phase II/III clinical trials for solid tumors such as small-cell lung cancer (SCLC). In this study, we aimed to evaluate the activity of Lurbinectedin on circulating mononuclear cells from CLL patients and to determine whether Lurbinectedin could affect the cross-talk between B-CLL cells and the tumor microenvironment. We found that Lurbinectedin induced a dose- and time-dependent death in all cell types evaluated, with B cells, monocytes and monocytic myeloid derived suppressor cells (Mo-MDSC) being the most susceptible populations. At sub-apoptotic doses, Lurbinectedin decreased the expression of CCR7 in B-CLL cells and impaired their migration towards CCL19 and CCL21. Furthermore, low concentrations of Lurbinectedin stimulated the synthesis of pro-IL1ß in monocytes and nurse-like cells, without inducing the inflammasome activation. Altogether, these results indicate that Lurbinectedin might have antitumor activity in CLL due to its direct action on leukemic cells in combination with its effects on the tumor microenvironment. Our findings encourage further investigation of Lurbinectedin as a potential therapy for CLL.


Assuntos
Carbolinas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Quimiocina CCL19/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL21/imunologia , Quimiocina CCL21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Cultura Primária de Células , Receptores CCR7/imunologia , Receptores CCR7/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia
20.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244518

RESUMO

Cannabidiol (CBD) has been used to treat a variety of cancers and inflammatory conditions with controversial results. In previous work, we have shown that breast cancer MCF-7 cells, selected by their response to inflammatory IL-1ß cytokine, acquire a malignant phenotype (6D cells) through an epithelial-mesenchymal transition (EMT). We evaluated CBD as a potential inhibitor of this transition and inducer of reversion to a non-invasive phenotype. It decreased 6D cell viability, downregulating expression of receptor CB1. The CBD blocked migration and progression of the IL-1ß-induced signaling pathway IL-1ß/IL-1RI/ß-catenin, the driver of EMT. Cannabidiol reestablished the epithelial organization lost by dispersion of the cells and re-localized E-cadherin and ß-catenin at the adherens junctions. It also prevented ß-catenin nuclear translocation and decreased over-expression of genes for ∆Np63α, BIRC3, and ID1 proteins, induced by IL-1ß for acquisition of malignant features. Cannabidiol inhibited the protein kinase B (AKT) activation, a crucial effector in the IL-1ß/IL-1RI/ß-catenin pathway, indicating that at this point there is crosstalk between IL-1ß and CBD signaling which results in phenotype reversion. Our 6D cell system allowed step-by-step analysis of the phenotype transition and better understanding of mechanisms by which CBD blocks and reverts the effects of inflammatory IL-1ß in the EMT.


Assuntos
Neoplasias da Mama/metabolismo , Canabidiol/farmacologia , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Neoplasias da Mama/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Cicatrização , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA