Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35547178

RESUMO

Traditional methods of quantitative analysis of CT images typically involve working with patient data, which is often expensive and limited in terms of ground truth. To counter these restrictions, quantitative assessments can instead be made through Virtual Imaging Trials (VITs) which simulate the CT imaging process. This study sought to validate DukeSim (a scanner-specific CT simulator) utilizing clinically relevant biomarkers for a customized anthropomorphic chest phantom. The physical phantom was imaged utilizing two commercial CT scanners (Siemens Somatom Force and Definition Flash) with varying imaging parameters. A computational version of the phantom was simulated utilizing DukeSim for each corresponding real acquisition. Biomarkers were computed and compared between the real and virtually acquired CT images to assess the validity of DukeSim. The simulated images closely matched the real images both qualitatively and quantitatively, with the average biomarker percent difference of 3.84% (range 0.19% to 18.27%). Results showed that DukeSim is reasonably well validated across various patient imaging conditions and scanners, which indicates the utility of DukeSim for further VIT studies where real patient data may not be feasible.

2.
Med Phys ; 49(12): 7447-7457, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36097259

RESUMO

BACKGROUND: Quantitative analysis of computed tomography (CT) images traditionally utilizes real patient data that can pose challenges with replicability, efficiency, and radiation exposure. Instead, virtual imaging trials (VITs) can overcome these hurdles through computer simulations of models of patients and imaging systems. DukeSim is a scanner-specific CT imaging simulator that has previously been validated with simple cylindrical phantoms, but not with anthropomorphic conditions and clinically relevant measurements. PURPOSE: To validate a scanner-specific CT simulator (DukeSim) for the assessment of lung imaging biomarkers under clinically relevant conditions across multiple scanners using an anthropomorphic chest phantom, and to demonstrate the utility of virtual trials by studying the effects or radiation dose and reconstruction kernels on the lung imaging quantifications. METHODS: An anthropomorphic chest phantom with customized tube inserts was imaged with two commercial scanners (Siemens Force and Siemens Flash) at 28 dose and reconstruction conditions. A computational version of the chest phantom was used with a scanner-specific CT simulator (DukeSim) to simulate virtual images corresponding to the settings of the real acquisitions. Lung imaging biomarkers were computed from both real and simulated CT images and quantitatively compared across all imaging conditions. The VIT framework was further utilized to investigate the effects of radiation dose (20-300 mAs) and reconstruction settings (Qr32f, Qr40f, and Qr69f reconstruction kernels using ADMIRE strength 3) on the accuracy of lung imaging biomarkers, compared against the ground-truth values modeled in the computational chest phantom. RESULTS: The simulated CT images matched closely the real images for both scanners and all imaging conditions qualitatively and quantitatively, with the average biomarker percent error of 3.51% (range 0.002%-18.91%). The VIT study showed that sharper reconstruction kernels had lower accuracy with errors in mean lung HU of 84-94 HU, lung volume of 797-3785 cm3 , and lung mass of -800 to 1751 g. Lower tube currents had the lower accuracy with errors in mean lung HU of 6-84 HU, lung volume of 66-3785 cm3 , and lung mass of 170-1751 g. Other imaging biomarkers were consistent under the studied reconstruction settings and tube currents. CONCLUSION: We comprehensively evaluated the realism of DukeSim in an anthropomorphic setup across a diverse range of imaging conditions. This study paves the way toward utilizing VITs more reliably for conducting medical imaging experiments that are not practical using actual patient images.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Tomógrafos Computadorizados , Simulação por Computador , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA