Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.989
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629796

RESUMO

Neuroimaging studies have shown that the neural representation of imagery is closely related to the perception modality; however, the undeniable different experiences between perception and imagery indicate that there are obvious neural mechanism differences between them, which cannot be explained by the simple theory that imagery is a form of weak perception. Considering the importance of functional integration of brain regions in neural activities, we conducted correlation analysis of neural activity in brain regions jointly activated by auditory imagery and perception, and then brain functional connectivity (FC) networks were obtained with a consistent structure. However, the connection values between the areas in the superior temporal gyrus and the right precentral cortex were significantly higher in auditory perception than in the imagery modality. In addition, the modality decoding based on FC patterns showed that the FC network of auditory imagery and perception can be significantly distinguishable. Subsequently, voxel-level FC analysis further verified the distribution regions of voxels with significant connectivity differences between the 2 modalities. This study complemented the correlation and difference between auditory imagery and perception in terms of brain information interaction, and it provided a new perspective for investigating the neural mechanisms of different modal information representations.


Assuntos
Córtex Auditivo , Mapeamento Encefálico , Mapeamento Encefálico/métodos , Imaginação , Encéfalo/diagnóstico por imagem , Percepção Auditiva , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Córtex Auditivo/diagnóstico por imagem
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991276

RESUMO

Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.


Assuntos
Córtex Motor , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Córtex Motor/fisiologia , Imaginação/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Movimento/fisiologia , Potencial Evocado Motor/fisiologia
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183186

RESUMO

Motor imagery (MI) is a cognitive process wherein an individual mentally rehearses a specific movement without physically executing it. Recently, MI-based brain-computer interface (BCI) has attracted widespread attention. However, accurate decoding of MI and understanding of neural mechanisms still face huge challenges. These seriously hinder the clinical application and development of BCI systems based on MI. Thus, it is very necessary to develop new methods to decode MI tasks. In this work, we propose a multi-branch convolutional neural network (MBCNN) with a temporal convolutional network (TCN), an end-to-end deep learning framework to decode multi-class MI tasks. We first used MBCNN to capture the MI electroencephalography signals information on temporal and spectral domains through different convolutional kernels. Then, we introduce TCN to extract more discriminative features. The within-subject cross-session strategy is used to validate the classification performance on the dataset of BCI Competition IV-2a. The results showed that we achieved 75.08% average accuracy for 4-class MI task classification, outperforming several state-of-the-art approaches. The proposed MBCNN-TCN-Net framework successfully captures discriminative features and decodes MI tasks effectively, improving the performance of MI-BCIs. Our findings could provide significant potential for improving the clinical application and development of MI-based BCI systems.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Redes Neurais de Computação , Algoritmos , Imagens, Psicoterapia , Eletroencefalografia/métodos
4.
Proc Natl Acad Sci U S A ; 119(32): e2120025119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914150

RESUMO

Hundreds of millions of poor families receive some form of targeted social assistance. Many of these antipoverty programs involve some degree of geographic targeting, where aid is prioritized to the poorest regions of the country. However, policy makers in many low-resource settings lack the disaggregated poverty data required to make effective geographic targeting decisions. Using several independent datasets from Nigeria, this paper shows that high-resolution poverty maps, constructed by applying machine learning algorithms to satellite imagery and other nontraditional geospatial data, can improve the targeting of government cash transfers to poor families. Specifically, we find that geographic targeting relying on machine learning-based poverty maps can reduce errors of exclusion and inclusion relative to geographic targeting based on recent nationally representative survey data. This result holds for antipoverty programs that target both the poor and the extreme poor and for initiatives of varying sizes. We also find no evidence that machine learning-based maps increase targeting disparities by demographic groups, such as gender or religion. Based in part on these findings, the Government of Nigeria used this approach to geographically target emergency cash transfers in response to the COVID-19 pandemic.


Assuntos
Pobreza , Seguridade Social , Geografia , Humanos , Nigéria
5.
Proc Natl Acad Sci U S A ; 119(30): e2204379119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858450

RESUMO

Prediction errors guide many forms of learning, providing teaching signals that help us improve our performance. Implicit motor adaptation, for instance, is thought to be driven by sensory prediction errors (SPEs), which occur when the expected and observed consequences of a movement differ. Traditionally, SPE computation is thought to require movement execution. However, recent work suggesting that the brain can generate sensory predictions based on motor imagery or planning alone calls this assumption into question. Here, by measuring implicit motor adaptation during a visuomotor task, we tested whether motor planning and well-timed sensory feedback are sufficient for adaptation. Human participants were cued to reach to a target and were, on a subset of trials, rapidly cued to withhold these movements. Errors displayed both on trials with and without movements induced single-trial adaptation. Learning following trials without movements persisted even when movement trials had never been paired with errors and when the direction of movement and sensory feedback trajectories were decoupled. These observations indicate that the brain can compute errors that drive implicit adaptation without generating overt movements, leading to the adaptation of motor commands that are not overtly produced.


Assuntos
Aprendizagem , Desempenho Psicomotor , Adaptação Fisiológica , Retroalimentação Sensorial , Humanos , Movimento
6.
J Neurosci ; 43(38): 6508-6524, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37582626

RESUMO

Humans constantly receive massive amounts of information, both perceived from the external environment and imagined from the internal world. To function properly, the brain needs to correctly identify the origin of information being processed. Recent work has suggested common neural substrates for perception and imagery. However, it has remained unclear how the brain differentiates between external and internal experiences with shared neural codes. Here we tested this question in human participants (male and female) by systematically investigating the neural processes underlying the generation and maintenance of visual information from voluntary imagery, veridical perception, and illusion. The inclusion of illusion allowed us to differentiate between objective and subjective internality: while illusion has an objectively internal origin and can be viewed as involuntary imagery, it is also subjectively perceived as having an external origin like perception. Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, we observed superior orientation representations in parietal cortex during imagery compared with perception, and conversely in early visual cortex. This imagery dominance gradually developed along a posterior-to-anterior cortical hierarchy from early visual to parietal cortex, emerged in the early epoch of imagery and sustained into the delay epoch, and persisted across varied imagined contents. Moreover, representational strength of illusion was more comparable to imagery in early visual cortex, but more comparable to perception in parietal cortex, suggesting content-specific representations in parietal cortex differentiate between subjectively internal and external experiences, as opposed to early visual cortex. These findings together support a domain-general engagement of parietal cortex in internally generated experience.SIGNIFICANCE STATEMENT How does the brain differentiate between imagined and perceived experiences? Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, the current study revealed enhanced stimulus-specific representations in visual imagery originating from parietal cortex, supporting the subjective experience of imagery. This neural principle was further validated by evidence from visual illusion, wherein illusion resembled perception and imagery at different levels of cortical hierarchy. Our findings provide direct evidence for the critical role of parietal cortex as a domain-general region for content-specific imagery, and offer new insights into the neural mechanisms underlying the differentiation between subjectively internal and external experiences.


Assuntos
Ilusões , Percepção Visual , Humanos , Masculino , Feminino , Imaginação , Lobo Parietal , Encéfalo , Mapeamento Encefálico , Imageamento por Ressonância Magnética
7.
Neuroimage ; : 120746, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033789

RESUMO

The effectiveness of motor imagery (MI) training on sports performance is now well-documented. Recently, it has been proposed that a single session of MI combined with low frequency sound (LFS) might enhance muscle activation. However, the neural mechanisms underlying this effect remain unknown. We set up a test-retest intervention over the course of 2 consecutive days to evaluate the effect of (i) MI training (MI, n = 20), (ii) MI combined with LFS (MI + LFS, n = 20), and (iii) a control condition (CTRL, n = 20) on force torque produced across repeated maximal voluntary contractions of the quadriceps before (Pretest), after (Posttest) and at +12 h (Retention) post-intervention. We collected the integrated electromyograms of the quadriceps muscles, as well as brain electrical potentials during each experimental intervention. In the CTRL group, total force torque decreased from Pretest to Retention and from Posttest to Retention. By contrast, there was an increase between Posttest and Retention in both MI + LFS and MI groups (both ηP2 = 0.03, p < 0.05). Regression analyses further revealed a negative relationship between force performance and EEG activity in the MI + LFS group only. The data support a transient interference of LFS on cortical activity underlying the priming effects of MI practice on force performance. Findings are discussed in relation to the potential for motor reprogramming through MI combined with LFS.

8.
Neuroimage ; 295: 120621, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797383

RESUMO

Although one can recognize the environment by soundscape substituting vision to auditory signal, whether subjects could perceive the soundscape as visual or visual-like sensation has been questioned. In this study, we investigated hierarchical process to elucidate the recruitment mechanism of visual areas by soundscape stimuli in blindfolded subjects. Twenty-two healthy subjects were repeatedly trained to recognize soundscape stimuli converted by visual shape information of letters. An effective connectivity method called dynamic causal modeling (DCM) was employed to reveal how the brain was hierarchically organized to recognize soundscape stimuli. The visual mental imagery model generated cortical source signals of five regions of interest better than auditory bottom-up, cross-modal perception, and mixed models. Spectral couplings between brain areas in the visual mental imagery model were analyzed. While within-frequency coupling is apparent in bottom-up processing where sensory information is transmitted, cross-frequency coupling is prominent in top-down processing, corresponding to the expectation and interpretation of information. Sensory substitution in the brain of blindfolded subjects derived visual mental imagery by combining bottom-up and top-down processing.


Assuntos
Percepção Auditiva , Imaginação , Humanos , Masculino , Feminino , Imaginação/fisiologia , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Percepção Visual/fisiologia , Estimulação Acústica , Eletroencefalografia , Magnetoencefalografia/métodos
9.
J Neurophysiol ; 131(4): 607-618, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381536

RESUMO

The benefits of cold have long been recognized in sport and medicine. However, it also brings costs, which have more rarely been investigated, notably in terms of sensorimotor control. We hypothesized that, in addition to peripheral effects, cold slows down the processing of proprioceptive cues, which has an impact on both feedback and feedforward control. We therefore compared the performances of participants whose right arm had been immersed in either cold water (arm temperature: 14°C) or lukewarm water (arm temperature: 34°C). In experiment 1, we administered a Fitts's pointing task and performed a kinematic analysis to determine whether sensorimotor control processes were affected by the cold. Results revealed 1) modifications in late kinematic parameters, suggesting changes in the use of proprioceptive feedback, and 2) modifications in early kinematic parameters, suggesting changes in action representations and/or feedforward processes. To explore our hypothesis further, we ran a second experiment in which no physical movement was involved, and thus no peripheral effects. Participants were administrated a hand laterality task, known to involve implicit motor imagery and assess the internal representation of the hand. They were shown left- and right-hand images randomly displayed in different orientations in the picture plane and had to identify as quickly and as accurately as possible whether each image was of the left hand or the right hand. Results revealed slower responses and more errors when participants had to mentally rotate the cooled hand in the extreme orientation of 160°, further suggesting the impact of cold on action representations.NEW & NOTEWORTHY We investigated how arm cooling modulates sensorimotor representations and sensorimotor control. Arm cooling induced changes in early kinematic parameters of pointing, suggesting an impact on feedforward processes or hand representation. Arm cooling induced changes in late kinematic parameters of pointing, suggesting an impact on feedback processes. Arm cooling also affected performance on a hand laterality task, suggesting that action representations were modified.


Assuntos
Braço , Lateralidade Funcional , Humanos , Lateralidade Funcional/fisiologia , Movimento/fisiologia , Mãos/fisiologia , Propriocepção , Água , Desempenho Psicomotor/fisiologia
10.
J Neurophysiol ; 131(5): 832-841, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323330

RESUMO

The aim of this study was to evaluate mirror visual feedback (MVF) as a training tool for brain-computer interface (BCI) users. This is because approximately 20-30% of subjects require more training to operate a BCI system using motor imagery. Electroencephalograms (EEGs) were recorded from 18 healthy subjects, using event-related desynchronization (ERD) to observe the responses during the movement or movement intention of the hand for the conditions of control, imagination, and the MVF with the mirror box. We constituted two groups: group 1: control, imagination, and MVF; group 2: control, MVF, and imagination. There were significant differences in imagination conditions between groups using MVF before or after imagination (right-hand, P = 0.0403; left-hand, P = 0.00939). The illusion of movement through MVF is not possible in all subjects, but even in those cases, we found an increase in imagination when the subject used the MVF previously. The increase in the r2s of imagination in the right and left hands suggests cross-learning. The increase in motor imagery recorded with EEG after MVF suggests that the mirror box made it easier to imagine movements. Our results provide evidence that the MVF could be used as a training tool to improve motor imagery.NEW & NOTEWORTHY The increase in motor imagery recorded with EEG after MVF (mirror visual feedback) suggests that the mirror box made it easier to imagine movements. Our results demonstrate that MVF could be used as a training tool to improve motor imagery.


Assuntos
Interfaces Cérebro-Computador , Retroalimentação Sensorial , Imaginação , Humanos , Imaginação/fisiologia , Masculino , Feminino , Adulto , Retroalimentação Sensorial/fisiologia , Adulto Jovem , Eletroencefalografia , Movimento/fisiologia , Mãos/fisiologia , Atividade Motora/fisiologia
11.
J Neurophysiol ; 132(1): 162-176, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836298

RESUMO

The pupillary light response was long considered a brainstem reflex, outside of cognitive influence. However, newer findings indicate that pupil dilation (and eye movements) can reflect content held "in mind" with working memory (WM). These findings may reshape understanding of ocular and WM mechanisms, but it is unclear whether the signals are artifactual or functional to WM. Here, we ask whether peripheral and oculomotor WM signals are sensitive to the task-relevance or "attentional state" of WM content. During eye-tracking, human participants saw both dark and bright WM stimuli, then were retroactively cued to the item that would most likely be tested. Critically, we manipulated the attentional priority among items by varying the cue reliability across blocks. We confirmed previous findings that remembering darker items is associated with larger pupils (vs. brighter), and that gaze is biased toward cued item locations. Moreover, we discovered that pupil and eye movement responses were influenced differently by WM item relevance. Feature-specific pupillary effects emerged only for highly prioritized WM items but were eliminated when cues were less reliable, and pupil effects also increased with self-reported visual imagery strength. Conversely, gaze position consistently veered toward the cued item location, regardless of cue reliability. However, biased microsaccades occurred at a higher frequency when cues were more reliable, though only during a limited post-cue time window. Therefore, peripheral sensorimotor processing is sensitive to the task-relevance or functional state of internal WM content, but pupillary and eye movement WM signals show distinct profiles. These results highlight a potential role for early visual processing in maintaining multiple WM content dimensions.NEW & NOTEWORTHY Here, we found that working memory (WM)-driven ocular inflections-feature-specific pupillary and saccadic biases-were muted for memory items that were less behaviorally relevant. This work illustrates that functionally informative goal signals may extend as early as the sensorimotor periphery, that pupil size may be under more fine-grained control than originally thought, and that ocular signals carry multiple dimensions of cognitively relevant information.


Assuntos
Atenção , Sinais (Psicologia) , Movimentos Oculares , Imaginação , Memória de Curto Prazo , Pupila , Humanos , Memória de Curto Prazo/fisiologia , Feminino , Masculino , Adulto , Pupila/fisiologia , Adulto Jovem , Atenção/fisiologia , Imaginação/fisiologia , Movimentos Oculares/fisiologia , Tecnologia de Rastreamento Ocular , Percepção Visual/fisiologia
12.
Hum Brain Mapp ; 45(3): e26590, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401134

RESUMO

It has been suggested that visual images are memorized across brief periods of time by vividly imagining them as if they were still there. In line with this, the contents of both working memory and visual imagery are known to be encoded already in early visual cortex. If these signals in early visual areas were indeed to reflect a combined imagery and memory code, one would predict them to be weaker for individuals with reduced visual imagery vividness. Here, we systematically investigated this question in two groups of participants. Strong and weak imagers were asked to remember images across brief delay periods. We were able to reliably reconstruct the memorized stimuli from early visual cortex during the delay. Importantly, in contrast to the prediction, the quality of reconstruction was equally accurate for both strong and weak imagers. The decodable information also closely reflected behavioral precision in both groups, suggesting it could contribute to behavioral performance, even in the extreme case of completely aphantasic individuals. Our data thus suggest that working memory signals in early visual cortex can be present even in the (near) absence of phenomenal imagery.


Assuntos
Memória de Curto Prazo , Córtex Visual , Humanos , Percepção Visual , Córtex Visual/diagnóstico por imagem , Imagens, Psicoterapia , Rememoração Mental , Imaginação
13.
J Neurosci Res ; 102(1): e25262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849328

RESUMO

Mental imagery enables people to simulate experiences in their minds without the presence of an external stimulus. The underlying biochemical mechanisms are poorly understood but there is vague evidence that dopamine may play a significant role. A better understanding at the biochemical level could help to unravel the mechanisms of mental imagery and related phenomena such as aphantasia (= lack of voluntary mental imagery), but also opens up possibilities for interventions to enhance or restore mental imagery. To test the hypothesis that acute dopamine depletion leads to a decrease in the strength of mental imagery, N = 22 male participants will be administered an amino acid mixture containing branched-chain amino acids (BCAAs) and tryptophan (TRP) to transiently reduce dopamine synthesis and further N = 22 male participants will receive a placebo. Plasma prolactin (PRL) levels are determined as a peripheral marker of brain dopamine function. The strength of mental imagery will be measured before and after ingestion of the BCAA/TRP mixture using the method of mental imagery priming. Additional exploratory analyses will use genetic data to investigate possible effects of variations on dopaminergic gene loci (e.g., DAT1) on dopamine levels and strength of mental imagery. The results show […].


Assuntos
Aminoácidos , Dopamina , Humanos , Masculino , Dopamina/metabolismo , Triptofano/metabolismo , Aminoácidos de Cadeia Ramificada
14.
Proc Biol Sci ; 291(2018): 20232867, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471562

RESUMO

A delayed foveal mask affects perception of peripheral stimuli. The effect is determined by the timing of the mask and by the similarity with the peripheral stimulus. A congruent mask enhances performance, while an incongruent one impairs it. It is hypothesized that foveal masks disrupt a feedback mechanism reaching the foveal cortex. This mechanism could be part of a broader circuit associated with mental imagery, but this hypothesis has not as yet been tested. We investigated the link between mental imagery and foveal feedback. We tested the relationship between performance fluctuations caused by the foveal mask-measured in terms of discriminability (d') and criterion (C)-and the scores from two questionnaires designed to assess mental imagery vividness (VVIQ) and another exploring object imagery, spatial imagery and verbal cognitive styles (OSIVQ). Contrary to our hypotheses, no significant correlations were found between VVIQ and the mask's impact on d' and C. Neither the object nor spatial subscales of OSIVQ correlated with the mask's impact. In conclusion, our findings do not substantiate the existence of a link between foveal feedback and mental imagery. Further investigation is needed to determine whether mask interference might occur with more implicit measures of imagery.


Assuntos
Imaginação , Percepção Visual , Fóvea Central , Inquéritos e Questionários , Personalidade
15.
Proc Biol Sci ; 291(2018): 20232067, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471550

RESUMO

Like many polar animals, emperor penguin populations are challenging to monitor because of the species' life history and remoteness. Consequently, it has been difficult to establish its global status, a subject important to resolve as polar environments change. To advance our understanding of emperor penguins, we combined remote sensing, validation surveys and using Bayesian modelling, we estimated a comprehensive population trajectory over a recent 10-year period, encompassing the entirety of the species' range. Reported as indices of abundance, our study indicates with 81% probability that there were fewer adult emperor penguins in 2018 than in 2009, with a posterior median decrease of 9.6% (95% credible interval (CI) -26.4% to +9.4%). The global population trend was -1.3% per year over this period (95% CI = -3.3% to +1.0%) and declines probably occurred in four of eight fast ice regions, irrespective of habitat conditions. Thus far, explanations have yet to be identified regarding trends, especially as we observed an apparent population uptick toward the end of time series. Our work potentially establishes a framework for monitoring other Antarctic coastal species detectable by satellite, while promoting a need for research to better understand factors driving biotic changes in the Southern Ocean ecosystem.


Assuntos
Spheniscidae , Animais , Ecossistema , Teorema de Bayes , Fatores de Tempo , Tecnologia de Sensoriamento Remoto , Regiões Antárticas
16.
Muscle Nerve ; 69(5): 643-646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488222

RESUMO

INTRODUCTION/AIMS: Mental rotation (MR), a tool of implicit motor imagery, is the ability to rotate mental representations of two- or three-dimensional objects. Although many reports have described changes in brain activity during MR tasks, it is not clear whether the excitability of anterior horn cells in the spinal cord can be changed. In this study, we examined whether MR tasks of hand images affect the excitability of anterior horn cells using F-wave analysis. METHODS: Right-handed, healthy participants were recruited for this study. F-waves of the right abductor pollicis brevis were recorded after stimulation of the right median nerve at rest, during a non-MR task, and during an MR task. The F-wave persistence and the F/M amplitude ratio were calculated and analyzed. RESULTS: Twenty participants (11 men and 9 women; mean age, 29.2 ± 4.4 years) were initially recruited, and data from the 18 that met the inclusion criteria were analyzed. The F-wave persistence was significantly higher in the MR task than in the resting condition (p = .001) or the non-MR task (p = .012). The F/M amplitude ratio was significantly higher in the MR task than in the resting condition (p = .019). DISCUSSION: The MR task increases the excitability of anterior horn cells corresponding to the same body part. MR tasks may have the potential for improving motor function in patients with reduced excitability of the anterior horn cells, although this methodology must be further verified in a clinical setting.


Assuntos
Células do Corno Anterior , Corpo Humano , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Células do Corno Anterior/fisiologia , Músculo Esquelético/fisiologia , Medula Espinal , Nervo Mediano/fisiologia , Potencial Evocado Motor/fisiologia , Eletromiografia
17.
J Sleep Res ; 33(2): e14003, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37688512

RESUMO

Nightmares are common among the general population and psychiatric patients and have been associated with signs of nocturnal arousal such as increased heart rate or increased high-frequency electroencephalographic (EEG) activity. However, it is still unclear, whether these characteristics are more of a trait occurring in people with frequent nightmares or rather indicators of the nightmare state. We compared participants with frequent nightmares (NM group; n = 30) and healthy controls (controls; n = 27) who spent 4 nights in the sleep laboratory over the course of 8 weeks. The NM group received six sessions of imagery rehearsal therapy (IRT), the 'gold standard' of cognitive-behavioural therapy for nightmares, between the second and the third night. Sleep architecture and spectral power were compared between groups, and between nights of nightmare occurrence and nights without nightmare occurrence in the NM group. Additionally, changes before and after therapy were recorded. The NM group showed increased beta (16.25-31 Hz) and low gamma (31.25-35 Hz) power during the entire night compared to the controls, but not when comparing nights of nightmare occurrence to those without. Moreover, low gamma activity in rapid eye movement sleep was reduced after therapy in the NM group. Our findings indicate, cortical hyperarousal is more of a trait in people with frequent nightmares within a network of other symptoms, but also malleable by therapy. This is not only a new finding for IRT but could also lead to improved treatment options in the future that directly target high-frequency EEG activity.


Assuntos
Sonhos , Transtornos de Estresse Pós-Traumáticos , Humanos , Sonhos/fisiologia , Sono , Sono REM/fisiologia , Nível de Alerta/fisiologia , Eletroencefalografia
18.
Psychother Psychosom ; : 1-7, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934153

RESUMO

INTRODUCTION: Imagery rescripting (ImRs) is a psychotherapeutic intervention targeting aversive memories. During the three-phase intervention, patients reexperience their aversive memory (phase 1), observe the scene from their adult perspective, and intervene to help their former selves (phase 2), and reexperience it again with the positive changes (phase 3). Previous studies have rarely investigated emotional and regulatory processes taking place during the intervention. OBJECTIVE: This randomized controlled trial investigated self-reported affective and physiological responses during ImRs. METHODS: Seventy-seven patients with social anxiety disorder (SAD) were randomly assigned to a single session of ImRs or a control intervention (recall and discussion of the memory) targeting an aversive social memory. Heart rate (HR) and heart rate variability (HRV) were assessed during and post hoc ratings of positive and negative feelings after baseline and the intervention phases. RESULTS: Relative to the control intervention, ImRs resulted in an initial increase in negative feelings from baseline to phase 1 and a following larger (phase 1 to phase 2) and more stable (phase 2 to phase 3) decrease in negative feelings/increase in positive feelings. On the physiological level, during ImRs compared to the control intervention, mean HR was significantly higher during phase 1 and HRV during phase 3, each compared to baseline. CONCLUSIONS: These results provide further information about the specific sequence of emotional responses on different response levels during ImRs, being consistent with known theories of emotional processing and supposed mechanisms of ImRs.

19.
Psychophysiology ; 61(4): e14486, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37973366

RESUMO

Imagery has been associated with cardiovascular and psychological responses to stress; however, the mechanisms underlying this association are not fully understood. The present study examined if the ability to image mastering challenging or difficult situations moderated the relationship between heart rate reactivity and perceptions of stress and physiological arousal experienced during acute stress. Four hundred and fifty-eight participants completed a standardized laboratory stress protocol with heart rate being measured throughout. After completing an acute psychological stress task, participants rated how stressed and physiologically aroused they felt (i.e., intensity) and whether they perceived the stress and physiological arousal as being helpful/unhelpful to performance (i.e., interpretation). Mastery imagery ability was assessed by questionnaire. Moderation analyses controlling for gender demonstrated that imagery ability moderated the relationship between heart rate reactivity and interpretation of stress (ß = 0.015, p = .003) and perceived physiological arousal (ß = 0.013, p = .004). Simple slope analysis indicated that in those with higher imagery ability, heart rate reactivity was associated with stress and arousal being perceived as more positive toward performance. Imagery ability did not moderate the relationship between heart rate reactivity and perceived stress intensity or physiological arousal intensity (p's > .05), but imagery ability did predict lower perceived stress intensity (ß = -0.217, p < .001) and perceived physiological arousal intensity (ß = -0.172, p < .001). Higher mastery imagery ability may possibly help individuals perceive responses to stress as more beneficial for performance and thus be an effective coping technique.


Assuntos
Emoções , Imagens, Psicoterapia , Humanos , Frequência Cardíaca , Estresse Psicológico/psicologia , Nível de Alerta
20.
Environ Sci Technol ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334723

RESUMO

Residential building material stock constitutes a significant part of the built environment, providing crucial shelter and habitat services. The hypothesis concerning stock mass and composition has garnered considerable attention over the past decade. While previous research has mainly focused on the spatial analysis of building masses, it often neglected the component-level stock analysis or where heavy labor cost for onsite survey is required. This paper presents a novel approach for efficient component-level residential building stock accounting in the United Kingdom, utilizing drive-by street view images and building footprint data. We assessed four major construction materials: brick, stone, mortar, and glass. Compared to traditional approaches that utilize surveyed material intensity data, the developed method employs automatically extracted physical dimensions of building components incorporating predicted material types to calculate material mass. This not only improves efficiency but also enhances accuracy in managing the heterogeneity of building structures. The results revealed error rates of 5 and 22% for mortar and glass mass estimations and 8 and 7% for brick and stone mass estimations, with known wall types. These findings represent significant advancements in building material stock characterization and suggest that our approach has considerable potential for further research and practical applications. Especially, our method establishes a basis for evaluating the potential of component-level material reuse, serving the objectives of a circular economy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA