Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Immunol ; 24(1): 20, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480016

RESUMO

BACKGROUND: The anglerfish, belonging to the teleost order Lophiiformes, are a diverse and species-rich group of fish that are known to exhibit a number of unique morphological, reproductive and immunological adaptations. Work to date has identified the loss of specific adaptive immune components in two of the five Lophiiformes sub-orders (Lophioidei and Ceratioidei), while no anomalies have been identified to date in two other sub-orders, Antennaroidei and Chaunacoidei. The immunogenome of the fifth sub-order, Ogcocephaloidei has not yet been investigated, and we have therefore used whole genome shotgun sequencing, combined with RNA-seq, to survey the adaptive immune capabilities of the polka-dot batfish, O. cubifrons, as a representative of this as yet unexplored sub-order. RESULTS: We find that the O. cubifrons genome encodes the core genes needed to mount adaptive T and B cell responses. These genes include those necessary for rearranging and editing antigen receptors, the antigen receptors themselves; as well as the co-receptors, signalling molecules, and antigen presenting molecules (both class I and class II) needed for B cell and T cell development and activation. CONCLUSIONS: From an immune perspective, the polka-dot batfish has a canonical complement of adaptive immune genes, and does not exhibit any of the adaptive immune changes previously identified in monkfish and oceanic anglerfish.


Assuntos
Linfócitos B , Animais , Diferenciação Celular
2.
Proc Natl Acad Sci U S A ; 114(25): 6575-6580, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28588142

RESUMO

Parasites can be a major cause of natural selection on hosts, which consequently evolve a variety of strategies to avoid, eliminate, or tolerate infection. When ecologically similar host populations present disparate infection loads, this natural variation can reveal immunological strategies underlying adaptation to infection and population divergence. For instance, the tapeworm Schistocephalus solidus persistently infects 0-80% of threespine stickleback (Gasterosteus aculeatus) in lakes on Vancouver Island. To test whether these heterogeneous infection rates result from evolved differences in immunity, we experimentally exposed laboratory-reared fish from ecologically similar high-infection and no-infection populations to controlled doses of Schistocephalus We observed heritable between-population differences in several immune traits: Fish from the naturally uninfected population initiated a stronger granulocyte response to Schistocephalus infection, and their granulocytes constitutively generate threefold more reactive oxygen species in cell culture. Despite these immunological differences, Schistocephalus was equally successful at establishing initial infections in both host populations. However, the no-infection fish dramatically suppressed tapeworm growth relative to high-infection fish, and parasite size was intermediate in F1 hybrid hosts. Our results show that stickleback recently evolved heritable variation in their capacity to suppress helminth growth by two orders of magnitude. Data from many natural populations indicate that growth suppression is widespread but not universal and, when present, is associated with reduced infection prevalence. Host suppression of helminth somatic growth may be an important immune strategy that aids in parasite clearance or in mitigating the fitness costs of persistent infection.


Assuntos
Cestoides/crescimento & desenvolvimento , Infecções por Cestoides/parasitologia , Doenças dos Peixes/parasitologia , Smegmamorpha/parasitologia , Vertebrados/parasitologia , Animais , Cestoides/imunologia , Doenças dos Peixes/imunologia , Granulócitos/imunologia , Granulócitos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Explosão Respiratória/imunologia , Smegmamorpha/imunologia , Vertebrados/imunologia , Virulência/imunologia
3.
Mol Biol Evol ; 32(7): 1717-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25758009

RESUMO

It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Imunidade Inata/genética , Aminoácidos/metabolismo , Animais , Genética Populacional , Humanos , Camundongos , Filogenia , Estrutura Terciária de Proteína , Seleção Genética , Especificidade da Espécie , Receptor 3 Toll-Like/química
4.
Fish Shellfish Immunol ; 51: 240-250, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26915306

RESUMO

B cell-activating factor (BAFF)is a member of the tumor necrosis factor (TNF) family and plays roles in B cell survival and maturation. In this study, the full-length cDNA of Nile tilapia (Oreochromis niloticus) BAFF (tBAFF) was amplified from the spleen by reverse transcription PCR (RT-PCR). The open reading frame of this cDNA encodes a protein of 261 amino acids containing a predicted transmembrane domain and a furin protease cleavage site, similar to mammalian, avian, and reptile BAFF. Real-time quantitative PCR (qPCR) analysis revealed that tBAFF is present in various tissues and is predominantly expressed in the spleen. The predicted three-dimensional (3D) structure of the Nile tilapia (Oreochromis niloticus) soluble BAFF (tsBAFF) monomer was determined by (3D) structure modeling monomeranalyzed by (3D) structure mouse counterpart. Both tsBAFF and EGFP/tsBAFF were efficiently expressed in Escherichia coli BL21 (DE3), as confirmed by SDS-PAGE and Western blot analysis. After purification, the EGFP/tsBAFF fusion protein showed a fluorescence spectrum similar to that of EGFP. Laser scanning confocal microscopy showed that EGFP/tsBAFF bound to its receptor. In vitro, tsBAFF promoted the proliferation of Nile tilapia and mouse splenic B cells together with/without a priming agent (Staphylococcus aureus Cowan 1, SAC) or anti-mouse IgM. Furthermore, tsBAFF showed a similar proliferation-stimulating effect on mouse B cells compared to msBAFF. These findings indicate that tsBAFF plays an important role in the proliferation of Nile tilapia B cells and has functional cross-reactivity among Nile tilapia and mammals. Therefore, BAFF may represent a useful factor for enhancing immunological efficacy in animals.


Assuntos
Fator Ativador de Células B , Linfócitos B/imunologia , Ciclídeos , Proteínas de Peixes , Sequência de Aminoácidos , Animais , Fator Ativador de Células B/química , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Ciclídeos/genética , Ciclídeos/imunologia , Ciclídeos/metabolismo , DNA Complementar/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Rim Cefálico/metabolismo , Imunoglobulina M/imunologia , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Camundongos , Estrutura Molecular , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Baço/metabolismo , Staphylococcus aureus/imunologia
5.
Dev Comp Immunol ; 140: 104624, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586430

RESUMO

Cross-species comparison of vertebrate genomes has unraveled previously unknown complexities of interferon (IFN) systems in amphibian species. Recent genomic curation revealed that amphibian species have evolved expanded repertoires of four types of intron-containing IFN genes akin to those seen in jawed fish, intronless type I IFNs and intron-containing type III IFNs akin to those seen in amniotes, as well as uniquely intronless type III IFNs. This appears to be the case with at least ten analyzed amphibian species; with distinct species encoding diverse repertoires of these respective IFN gene subsets. Amphibians represent a key stage in vertebrate evolution, and in this context offer a unique perspective into the divergent and converged pathways leading to the emergence of distinct IFN families and groups. Recent studies have begun to unravel the roles of amphibian IFNs during these animals' immune responses in general and during their antiviral responses, in particular. However, the pleiotropic potentials of these highly expanded amphibian IFN repertoires warrant further studies. Based on recent reports and our omics analyses using Xenopus models, we posit that amphibian IFN complex may have evolved novel functions, as indicated by their extensive molecular diversity. Here, we provide an overview and an update of the present understanding of the amphibian IFN complex in the context of the evolution of vertebrate immune systems. A greater understanding of the amphibian IFN complex will grant new perspectives on the evolution of vertebrate immunity and may yield new measures by which to counteract the global amphibian declines.


Assuntos
Interferon Tipo I , Interferons , Animais , Interferons/genética , Evolução Molecular , Interferon Tipo I/genética , Íntrons , Xenopus laevis , Interferon lambda
6.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873469

RESUMO

Many genes and signaling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signaling networks that must faithfully complete a developmental program while also defending against parasites, and trait signaling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.

7.
Evol Lett ; 6(2): 162-177, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386836

RESUMO

Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.

8.
Viruses ; 11(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208045

RESUMO

Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/ß subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/ß subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases.


Assuntos
Domesticação , Evolução Molecular , Fatores Imunológicos/genética , Interferons/genética , Suínos/genética , Suínos/imunologia , Vírus/imunologia , Animais , Seleção Genética
9.
Cells ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888074

RESUMO

Several recent studies have revealed previously unknown complexity of the amphibian interferon (IFN) system. Being unique in vertebrate animals, amphibians not only conserve and multiply the fish-like intron-containing IFN genes, but also rapidly evolve amniote-like intronless IFN genes in each tested species. We postulate that the amphibian IFN system confers an essential model to study vertebrate immune evolution in molecular and functional diversity to cope with unprecedented pathophysiological requirement during terrestrial adaption. Studies so far have ascribed a potential role of these IFNs in immune regulation against intracellular pathogens, particularly viruses; however, many knowledge gaps remain elusive. Based on recent reports about IFN's multifunctional properties in regulation of animal physiological and defense responses, we interpret that amphibian IFNs may evolve novel function pertinent to their superior molecular diversity. Such new function revealed by the emerging studies about antifungal and developmental regulation of amphibian IFNs will certainly promote our understanding of immune evolution in vertebrates to address current pathogenic threats causing amphibian decline.


Assuntos
Adaptação Biológica , Anfíbios/fisiologia , Evolução Biológica , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Xenopus laevis/fisiologia , Animais , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade , Interferons/genética , Íntrons , Filogenia , Especificidade da Espécie , Vertebrados , Xenopus laevis/classificação
10.
Front Immunol ; 7: 664, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119686

RESUMO

The ubiquitin-proteasome pathway (UPP) is a hallmark of the eukaryotic cell. In jawed vertebrates, it has been co-opted by the adaptive immune system, where proteasomal degradation produces endogenous peptides for major histocompatibility complex class I antigen presentation. However, proteolytic products are also necessary for the phylogenetically widespread innate immune system, as they often play a role as host defense peptides (HDPs), pivotal effectors against pathogens. Here, we report the identification of the arachnid HDP oligoventin, which shares homology to a core member of the UPP, E3 ubiquitin ligases. Oligoventin has broad antimicrobial activity and shows strong synergy with lysozymes. Using computational and phylogenetic approaches, we show high conservation of the oligoventin signature in HECT E3s. In silico simulation of HECT E3s self-proteolysis provides evidence that HDPs can be generated by fine-tuned 26S proteasomal degradation, and therefore are consistent with the hypothesis that oligoventin is a cryptic peptide released by the proteolytic processing of an Nedd4 E3 precursor protein. Finally, we compare the production of HDPs and endogenous antigens from orthologous HECT E3s by proteasomal degradation as a means of analyzing the UPP coupling to metazoan immunity. Our results highlight the functional plasticity of the UPP in innate and adaptive immune systems as a possibly recurrent mechanism to generate functionally diverse peptides.

11.
Results Probl Cell Differ ; 57: 1-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26537375

RESUMO

Host and pathogen engage in a constant evolutionary struggle known as a "Red Queen Paradigm". In this struggle, natural selection favours the pathogen which evolves effective virulence mechanisms and the host which is able to field adequate resistance strategies. A number of factors limit what each side can do. These include the fact that the elaboration of virulence or resistance mechanisms results in costs in genetic fitness and requires the use of ever more of the limited number of genes available in the genome. In addition, since the pathogen usually has a very much shorter generation time than the host, it can fix new virulence mutations much more quickly than the host can evolve matching resistance mechanisms. Finally, the host must ensure that its defence system does not result in unacceptable levels of collateral damage to its own tissues. This chapter briefly outlines how these considerations shape host-pathogen interactions.


Assuntos
Evolução Molecular , Aptidão Genética/genética , Interações Hospedeiro-Patógeno/genética , Imunidade/genética , Animais , Variação Genética/genética , Genética Populacional , Humanos , Virulência/genética
12.
Acta Microbiol Immunol Hung ; 61(3): 241-60, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25261940

RESUMO

Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.


Assuntos
Hormônios/imunologia , Sistema Imunitário , Inflamação/imunologia , Animais , Humanos
13.
Dev Comp Immunol ; 47(1): 36-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24984114

RESUMO

The animal gut serves as a primary location for the complex host-microbe interplay that is essential for homeostasis and may also reflect the types of ancient selective pressures that spawned the emergence of immunity in metazoans. In this review, we present a phylogenetic survey of gut host-microbe interactions and suggest that host defense systems arose not only to protect tissue directly from pathogenic attack but also to actively support growth of specific communities of mutualists. This functional dichotomy resulted in the evolution of immune systems much more tuned for harmonious existence with microbes than previously thought, existing as dynamic but primarily cooperative entities in the present day. We further present the protochordate Ciona intestinalis as a promising model for studying gut host-bacterial dialogue. The taxonomic position, gut physiology and experimental tractability of Ciona offer unique advantages in dissecting host-microbe interplay and can complement studies in other model systems.


Assuntos
Ciona intestinalis/microbiologia , Trato Gastrointestinal/microbiologia , Modelos Animais , Animais , Evolução Biológica , Cordados/imunologia , Cordados/microbiologia , Ciona intestinalis/crescimento & desenvolvimento , Cnidários/imunologia , Cnidários/microbiologia , Humanos , Mamíferos/microbiologia
14.
Open Biol ; 2(4): 120015, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22724060

RESUMO

The innate immune response is the first line of defence against infection. Germ-line-encoded receptors recognize conserved molecular motifs from both exogenous and endogenous sources. Receptor activation results in the initiation of a pro-inflammatory immune response that enables the resolution of infection. Understanding the inner workings of the innate immune system is a fundamental requirement in the search to understand the basis of health and disease. The development of new vaccinations, the treatment of pathogenic infection, the generation of therapies for chronic and auto-inflammatory disorders, and the ongoing battle against cancer, diabetes and atherosclerosis will all benefit from a greater understanding of innate immunity. The rate of knowledge acquisition in this area has been outstanding. It has been underpinned and driven by the use of model organisms. Information obtained from Drospohila melanogaster, knock-out and knock-in mice, and through the use of forward genetics has resulted in discoveries that have opened our eyes to the functionality and complexity of the innate immune system. With the current increase in genomic information, the range of innate immune receptors and pathways of other species available to study is rapidly increasing, and provides a rich resource to continue the development of innate immune research. Here, we address some of the highlights of cross-species study in the innate immune field and consider the benefits of widening the species-field further.


Assuntos
Imunidade Inata , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Evolução Molecular , Variação Genética , Humanos , Imunidade Inata/genética , Inflamação/genética , Inflamação/imunologia , Ligantes , Camundongos , Modelos Imunológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Especificidade da Espécie , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA