RESUMO
Single-cell transcriptomics analysis is an advanced technology that can describe the intracellular transcriptome in complex tissues. It profiles and analyses datasets by single-cell RNA sequencing. Neurodegenerative diseases are identified by the abnormal apoptosis of neurons in the brain with few or no effective therapy strategies at present, which has been a growing healthcare concern and brought a great burden to society. The transcriptome of individual cells provides deep insights into previously unforeseen cellular heterogeneity and gene expression differences in neurodegenerative disorders. It detects multiple cell subsets and functional changes during pathological progression, which deepens the understanding of the molecular underpinnings and cellular basis of neurodegenerative diseases. Furthermore, the transcriptome analysis of immune cells shows the regulation of immune response. Different subtypes of immune cells and their interaction are found to contribute to disease progression. This finding enables the discovery of novel targets and biomarkers for early diagnosis. In this review, we emphasize the principles of the technology, and its recent progress in the study of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. The application of single-cell transcriptomics analysis in neurodegenerative disorders would help explore the pathogenesis of these diseases and develop novel therapeutic methods.
Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Encéfalo/metabolismoRESUMO
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Assuntos
Dermatite Atópica , Microbiota , Pele , Humanos , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Microbiota/imunologia , Pele/microbiologia , Pele/imunologia , Pele/patologia , Microbioma Gastrointestinal/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , AnimaisRESUMO
Immunoglobulin E (IgE)-mediated food allergies are reported to affect around 3.5% of children and 2.4% of adults, with symptoms varying in range and severity. While being the gold standard for diagnosis, oral food challenges are burdensome, and diagnostic tools based on specific IgE can be flawed. Furthering our understanding of the mechanisms behind food allergy onset, severity and persistence could help reveal immune profiles associated with the disease, to ultimately aid in diagnosis. Alterations to cytokine levels and immune cell ratios have been identified, though further research is needed to fully capture the heterogenous nature of food allergy. Moreover, the existence of such immune alterations also raises the question of potential wider systemic effects. For example, recent research has emphasised the existence and impact of neuro-immune interactions and implicated behavioural and neurological changes associated with food allergy. This review will provide an overview of such food allergy-driven neuro-immune interactions, with the aim of emphasising the importance of furthering our understanding of the immune mechanisms underlying IgE-mediated food allergy.
RESUMO
Physical inactivity (PA) is an important risk factor for a wide range of diseases. Previous genome-wide association studies (GWAS), based on self-reported data or a small number of phenotypes derived from accelerometry, have identified a limited number of genetic loci associated with habitual PA and provided evidence for involvement of central nervous system in mediating genetic effects. In this study, we derived 27 PA phenotypes from wrist accelerometry data obtained from 88,411 UK Biobank study participants. Single-variant association analysis based on mixed-effects models and transcriptome-wide association studies (TWAS) together identified 5 novel loci that were not detected by previous studies of PA, sleep duration and self-reported chronotype. For both novel and previously known loci, we discovered associations with novel phenotypes including active-to-sedentary transition probability, light-intensity PA, activity during different times of the day and proxy phenotypes to sleep and circadian patterns. Follow-up studies including TWAS, colocalization, tissue-specific heritability enrichment, gene-set enrichment and genetic correlation analyses indicated the role of the blood and immune system in modulating the genetic effects and a secondary role of the digestive and endocrine systems. Our findings provided important insights into the genetic architecture of PA and its underlying mechanisms.
Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Acelerometria , Exercício Físico/fisiologia , Loci Gênicos , Predisposição Genética para Doença , HumanosRESUMO
During development of the spontaneously hypertensive rat (SHR), several distinct but closely related lines were generated. Most lines are resistant to hypertensive renal disease. However, the SHR-A3 line (stroke-prone SHR) experiences end-organ injury (EOI) and provides a model of injury susceptibility that can be used to uncover genetic causation. In the present study, we generated a congenic line in which three distinct disease loci in SHR-A3 are concurrently replaced with homologous loci from an injury-resistant SHR line (SHR-B2). Verification that all three loci were homozygously replaced in this triple congenic line [SHR-A3(Trip B2)] while the genetic background of SHR-A3 was fully retained was obtained by whole genome sequencing. Congenic genome substitution was without effect on systolic blood pressure [198.9 ± 3.34 mmHg, mean ± SE, SHR-A3(Trip B2) = 194.7 ± 2.55 mmHg]. Measures of renal injury (albuminuria, histological injury scores, and urinary biomarker levels) were reduced in SHR-A3(Trip B2) animals, even though only 4.5 Mbases of the 2.8 Gbases of the SHR-B2 genome (0.16% of the genome) was transferred into the congenic line. The gene content of the three congenic loci and the functional effects of gene polymorphism within suggest a role of immunoglobulin in EOI pathogenesis. To prove the role of antibodies in EOI in SHR-A3, we generated an SHR-A3 line in which expression from the immunoglobulin heavy chain gene was knocked out (SHR-A3-IGHKO). Animals in the SHR-A3-IGHKO line lack B cells and immunoglobulin, but the hypertensive phenotype is not affected. Renal injury, however, was reduced in this line, confirming a pathogenic role for immunoglobulin in hypertensive EOI in this model of heritable risk.NEW & NOTEWORTHY Here, we used a polygenic animal model of hypertensive renal disease to show that genetic variation affecting antibody formation underlies hypertensive renal disease. We proved the genetic thesis by generating an immunoglobulin knockout in the susceptible animal model.
Assuntos
Hipertensão , Acidente Vascular Cerebral , Ratos , Animais , Ratos Endogâmicos SHR , Formação de Anticorpos , Rim/metabolismo , Pressão Sanguínea/genética , Variação Genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologiaRESUMO
The worldwide rising prevalence of food allergy is a major public health concern. Standard care consists of allergen avoidance and rescue medication upon accidental exposure. Oral immunotherapy (OIT) is increasingly being studied as a treatment option. Although desensitization (an increased reaction threshold) is often achieved during OIT, sustained unresponsiveness (SU; clinical nonreactivity after finishing OIT) is not achieved in most patients. A few studies have investigated the effectiveness of OIT in children younger than 4 years of age (early = e-OIT) and have shown a much more favorable outcome in terms of SU development. Together with food allergy prevention studies, which have demonstrated high efficacy of early oral allergen exposure, the outcomes of e-OIT studies indicate an early-life window of opportunity to achieve SU, allowing unrestricted dietary intake. However, the underlying mechanism of the high effectiveness of e-OIT is not understood yet. Both cohort and OIT studies indicate early-life immune plasticity. An immature food-allergic response in the first years of life seems to be a major driver of this immune plasticity, along with a higher tolerogenic immunological state. Allergy maturation can likely be disrupted effectively by early intervention, preventing the development of persistent food allergy. Upcoming studies will provide important additional data on the safety, feasibility, and effectiveness of e-OIT. Combined with immune mechanistic studies, this should inform the implementation of e-OIT.
Assuntos
Dessensibilização Imunológica , Hipersensibilidade Alimentar , Humanos , Pré-Escolar , Alimentos , Alérgenos , Ingestão de Alimentos , Administração OralRESUMO
BACKGROUND: Immune checkpoint inhibitor (ICI)-based cancer therapies cause a variety of cutaneous immune-related adverse events (irAEs) including immunobullous skin eruptions like bullous pemphigoid (BP). However, little is known about the underlying immunopathogenic drivers of these reactions, and understanding the unique gene expression profile and immune composition of BP-irAE remains a critical knowledge gap in the field of oncodermatology/oncodermatopathology. METHODS: BP-irAE (n = 8) and de novo BP control (n = 8) biopsy samples were subjected to gene expression profiling using the NanoString® Technologies nCounter PanCancer Immune Profiling Panel. Multiplex immunofluorescence (mIF) studies using markers for T-cells (CD3 and CD8), T helper 1 (TH 1) cells (Tbet), TH 2 cells (Gata3), TH 17 cells (RORγT), and regulatory T-cells (Tregs; FoxP3) were further evaluated using InForm® image analysis. RESULTS: Compared with de novo BP controls, BP-irAE samples exhibited upregulation of 30 mRNA transcripts (p < 0.025), including toll-like receptor 4 (TLR4) and genes associated with complement activation, and downregulation of 89 mRNA transcripts (p < 0.025), including genes associated with TH 2, TH 17, and B-cell immune response. BP-irAE demonstrated a greater density of Tbet+ (TH 1) cells in the dermis (p = 0.004) and fewer Tregs in the blister floor (p = 0.028) when compared with that of de novo control BP samples. CONCLUSIONS: BP-irAE exhibited activation of the TLR4/complement-driven classical innate immune response pathway, with dermal TH 1 immune cell polarization and decreased Tregs in the blister floor. TLR/complement signaling may underlie the immunopathogenesis of BP-irAE.
Assuntos
Penfigoide Bolhoso , Humanos , Vesícula/metabolismo , Proteínas do Sistema Complemento , Imunofluorescência , Perfilação da Expressão Gênica , Imunidade Inata , Penfigoide Bolhoso/patologia , RNA Mensageiro , Receptor 4 Toll-Like/metabolismo , Regulação para CimaRESUMO
Abdominal aortic aneurysm (AAA) is an enlargement of the aorta greater than 50% in diameter. Although up to 80% of cases result in mortality if the aneurysm ruptures, patients are often diagnosed too late, as most cases are asymptomatic. The current treatment for AAA is still surgery as there are currently no effective drug treatments. Knowledge of the pathophysiological mechanisms is essential for the development of new preventive and therapeutic approaches. However, the molecular mechanisms are complex and remain unclear. Apoptosis of vascular smooth muscle cells, the major cellular component of the aorta, and degeneration of the extracellular matrix, the skeleton of the aortic wall, are hallmarks of AAA pathology. Inflammation, mainly through macrophage cells, has been recognized as a central factor in the development of AAA. Macrophage cells also orchestrate other pathways and immune cells involved in this process. Macrophages do not exist as pure populations at aneurysm sites. M1 macrophages are pro-inflammatory and weaken the aortic wall during AAA development. M2 macrophages, in contrast, are involved in anti-inflammatory reactions and aorta tissue repair. The balancing effect on AAA progression makes M1/M2 macrophages therapeutic targets to control inflammation and destruction of the aortic wall. An early diagnosis is also important to allow for early interventions. This review article, based on the available data, aims to evaluate the role of an immunotherapeutic approach in controlling AAA development by briefly discussing the immunological mechanisms.
RESUMO
BACKGROUND: For over a century, scientists have studied host-pathogen interactions between the crayfish plague disease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution is shaping the host's molecular response to the pathogen, susceptible native European noble crayfish and invasive disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain (introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of crayfish immunity and metabolism. RESULTS: We characterised several novel innate immune-related gene groups in both crayfish species. Across all challenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A strain, but not to the haplogroup B strain. CONCLUSIONS: We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors. With this study we outline that the type and strength of the host immune response to the pathogen is strongly influenced by the coevolutionary history of the crayfish with specific A. astaci strains.
Assuntos
Aphanomyces , Animais , Aphanomyces/genética , Astacoidea/genética , Resistência à Doença , Lagos , TranscriptomaRESUMO
Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in antiviral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. We demonstrate here that not only ECTV but also vaccinia virus and lymphocytic choriomeningitis virus induce CD4-CTL, though the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that major histocompatibility complex class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that antiviral CD4-CTL and noncytolytic T helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment, and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors, suggesting that further posttranscriptional regulation is required for CD4-CTL differentiation. Finally, CRISPR/Cas9-mediated deletion of Runx3 in CD4 T cells inhibited CD4-CTL but not classical Th1 cell differentiation in response to ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of posttranscriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTLs) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTLs require sustained antigen presentation and are induced by CD11c-expressing antigen-presenting cells. Moreover, we show that CD4-CTLs are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTLs upregulate protein levels of the transcription factors ThPOK, Runx3, and GATA-3 posttranscriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents induction of CD4-CTLs but not classical Th1 cells. These results advance our knowledge of how CD4-CTLs are induced during viral infection.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Ectromelia Infecciosa/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Viroses/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD11/análise , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Citotoxicidade Imunológica , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/virologia , Antígenos de Histocompatibilidade Classe II/análise , Fígado/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Th1/metabolismo , Transcriptoma , Replicação ViralRESUMO
Management of RA patients has significantly improved over the past decades. However, a substantial proportion of patients is difficult-to-treat (D2T), remaining symptomatic after failing biological and/or targeted synthetic DMARDs. Multiple factors can contribute to D2T RA, including treatment non-adherence, comorbidities and co-existing mimicking diseases (e.g. fibromyalgia). Additionally, currently available biological and/or targeted synthetic DMARDs may be truly ineffective ('true' refractory RA) and/or lead to unacceptable side effects. In this narrative review based on a systematic literature search, an overview of underlying (immune) mechanisms is presented. Potential scenarios are discussed including the influence of different levels of gene expression and clinical characteristics. Although the exact underlying mechanisms remain largely unknown, the heterogeneity between individual patients supports the assumption that D2T RA is a syndrome involving different pathogenic mechanisms.
Assuntos
Antirreumáticos , Artrite Reumatoide , Produtos Biológicos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Comorbidade , HumanosRESUMO
The invertebrate immune system possesses a mechanism named extracellular traps (ETs), it has been identified that this mechanism immobilizes and kills pathogens. ETs formation induces modification of histones, chromatin decondensation, and mixes with granule molecules, releasing them into the extracellular space as a defense mechanism. In the present review, we provide an overview on the identification of triggering stimuli such as pathogens, PAMPs, DAMPs, and chemical stimuli, discuss the participation of potential signaling pathways involving MAPK, PI3K, PKC, and ERK molecules that lead to NADPH oxidase or mitochondrial ROS production, and explore the potential relationship with several proteins such as myeloperoxidase, heat sock proteins, peroxinectin, elastase, and apolipoproteins. Furthermore, we also discuss the association of ETs with other immune mechanisms that could collaborate in the elimination of pathogens.
Assuntos
Armadilhas Extracelulares , Invertebrados/imunologia , Animais , Histonas , Mitocôndrias , NADPH Oxidases/metabolismo , Espécies Reativas de OxigênioRESUMO
Salmonella enterica Typhimurium is a rod-shaped Gram-negative bacterium that mostly enters the human body through contaminated food. It causes a gastrointestinal disorder called salmonellosis in humans and typhoid-like systemic disease in mice. OmpV, an outer membrane protein of S. Typhimurium, helps in adhesion and invasion of bacteria to intestinal epithelial cells and thus plays a vital role in the pathogenesis of S. Typhimurium. In this study, we have shown that intraperitoneal immunization with OmpV is able to induce high IgG production and protection against systemic disease. Further, oral immunization with OmpV-incorporated proteoliposome (OmpV-proteoliposome [PL]) induces production of high IgA antibody levels and protection against gastrointestinal infection. Furthermore, we have shown that OmpV induces Th1 bias in systemic immunization with purified OmpV, but both Th1 and Th2 polarization in oral immunization with OmpV-proteoliposome (PL). Additionally, we have shown that OmpV activates innate immune cells, such as monocytes, macrophages, and intestinal epithelial cells, in a Toll-like receptor 2 (TLR2)-dependent manner. Interestingly, OmpV is recognized by the TLR1/2 heterodimer in monocytes, but by both TLR1/2 and TLR2/6 heterodimers in macrophages and intestinal epithelial cells. Further, downstream signaling involves MyD88, interleukin-1 receptor-associated kinase (IRAK)-1, mitogen-activated protein kinase (MAPK) (both p38 and Jun N-terminal protein kinase (JNK)), and transcription factors NF-κB and AP-1. Due to its ability to efficiently activate both the innate and adaptive immune systems and protective efficacy, OmpV can be a potential vaccine candidate against S. Typhimurium infection. Further, the fact that OmpV can be recognized by both TLR1/2 and TLR2/6 heterodimers increases its potential to act as good adjuvant in other vaccine formulations.
Assuntos
Adesinas Bacterianas/imunologia , Antígenos de Bactérias/imunologia , Gastroenterite/imunologia , Gastroenterite/microbiologia , Imunidade , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Transdução de SinaisRESUMO
The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.
Assuntos
Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Transcriptoma , Animais , Camundongos , Camundongos MutantesRESUMO
Cancer metastasis is the leading cause of cancer-related death. Circulating tumor cells (CTCs) are shed into the bloodstream from either primary or metastatic tumors during an intermediate stage of metastasis. In recent years, immunotherapy has also become an important focus of cancer research. Thus, to study the relationship between CTCs and immunotherapy is extremely necessary and valuable to improve the treatment of cancer. In this review, based on the advancements of CTC isolation technologies, we mainly discuss the clinical applications of CTCs in cancer immunotherapy and the related immune mechanisms of CTC formation. In order to fully understand CTC formation, sufficiently and completely understood molecular mechanism based on the different immune cells is critical. This understanding is a promising avenue for the development of effective immunotherapeutic strategies targeting CTCs.
Assuntos
Biomarcadores Tumorais/metabolismo , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Células Neoplásicas Circulantes/patologia , Animais , Humanos , Neoplasias/sangue , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/imunologiaRESUMO
HIV controllers (HIC) maintain control of HIV replication without combined antiretroviral treatment (cART). The mechanisms leading to virus control are not fully known. We used gene expression and cellular analyses to compare HIC and HIV-1-infected individuals under cART. In the blood, HIC are characterized by a low inflammation, a downmodulation of natural killer inhibitory cell signaling, and an upregulation of T cell activation gene expression. This balance that persists after stimulation of cells with HIV antigens was consistent with functional analyses showing a bias toward a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. Taking advantage of the characterization of HIC based upon their CD8+ T lymphocyte capacity to suppress HIV-infection, we show here that unsupervised analysis of differentially expressed genes fits clearly with this cytotoxic activity, allowing the characterization of a specific signature of HIC. These results reveal significant features of HIC making the bridge between cellular function, gene signatures, and the regulation of inflammation and killing capacity of HIV-specific CD8+ T cells. Moreover, these genetic profiles are consistent through analyses performed from blood to peripheral blood mononuclear cells and T cells. HIC maintain strong HIV-specific immune responses with low levels of inflammation. Our findings may pave the way for new immunotherapeutic approaches leading to strong HIV-1-specific immune responses while minimizing inflammation.IMPORTANCE A small minority of HIV-infected patients, called HIV controllers (HIC), maintains spontaneous control of HIV replication. It is therefore important to identify mechanisms that contribute to the control of HIV replication that may have implications for vaccine design. We observed a low inflammation, a downmodulation of natural killer inhibitory cell signaling, and an upregulation of T-cell activation gene expression in the blood of HIC compared to patients under combined antiretroviral treatment. This profile persists following in vitro stimulation of peripheral blood mononuclear cells with HIV antigens, and was consistent with functional analyses showing a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. These results reveal significant features of HIC that maintain strong HIV-specific immune responses with low levels of inflammation. These findings define the immune status of HIC that is probably associated with the control of viral load.
Assuntos
Infecções por HIV/imunologia , Imunidade Inata/imunologia , Ativação Linfocitária/imunologia , Adulto , Idoso , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Regulação Viral da Expressão Gênica/genética , Antígenos HIV , Infecções por HIV/metabolismo , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Carga Viral , Replicação Viral/efeitos dos fármacosRESUMO
ANCA-associated vasculitis (AAV) is a group of chronic inflammatory diseases of small- and medium-sized vessels, which are broadly subdivided based on organ manifestations and disease-specific autoantibodies. The so called anti-neutrophil cytoplasmic antibodies (ANCA) mostly target one of the enzymes, proteinase 3 (PR3) or myeloperoxidase (MPO). Accumulating genetic data demonstrates that these two autoantibodies discriminate two distinct disease entities, more so than the clinical subdivision which is mainly criteria-based. Treatment of AAV includes heavy immunosuppression and is guided by which organs that are involved. Generally, patients with PR3-ANCA display higher risk for disease relapse than patients with MPO-ANCA. In this review, we will focus on the autoimmune features of PR3+ AAV and our current understanding of its triggers and the potential translation into clinical practice.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Mieloblastina/imunologia , Peroxidase/imunologia , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Cadeias beta de HLA-DP/imunologia , Cadeias beta de HLA-DP/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Modelos Imunológicos , Mieloblastina/metabolismo , Peroxidase/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
OBJECTIVE: To explore the molecular immune mechanism of HPV-infected HaCaT cells in vitro based on TLRs signaling pathway by analyzing the effects of interfering TLRs on inflammatory and immune factors in the signaling pathway. METHODS: FCM was used to analyze the proportion of Th1, Th2, Th17, and Treg cells in blood samples. HPV-infected HaCaT cells were divided into five groups: A, B, C, D, and E. Group A added TLR3 antagonist, group B added TLR9 antagonist, group C added equivalent saline, group D added IRF3 agonist, and group E added IRF3 inhibitor. Immunohistochemistry was used to analyze the expression of TLR3 and TLR9 in HaCaT cell model; ELISA was used to analyze the expression of inflammatory factors IL-2, TNF-a, and IFN-beta; WB was used to analyze the expression of TRAF3, IKK epsilon, and TBK1; RT-PCR was used to analyze the expression of IRF3 and IRF7 in each cell model. RESULTS: The proportion of blood immune cells in patients with HPV infection was Th1, Th17, Th2, and Treg, with statistical significance (P < .05); the expression of TLR3 and TLR9 in HPV-infected cells was higher than that in negative control group, with statistical significance (P < .05); TLR3 was higher than TLR9, with no significant difference (P > .05); the expression of IL-2, TNF-alpha, IFN-beta in each group, TLR3, and TLR9 was higher than that in negative control group (P < .05). The expression of TRAF3, IKK epsilon, and TBK1 in the control group was higher than that in the TLR3 and TLR9 inhibitor groups, and the expression of IRF3 and IRF7 in the TLR9 inhibitor group was higher than that in the TLR3 inhibitor group (P < .05); the expression of IRF3 and IRF7 in the TLR3i and TLR9i inhibitor groups was lower than that in the TLR3 inhibitor group (P < .05). Compared with the control group, IRF3a group was higher than the control group, IRF3i group was lower than the control group, the difference was statistically significant (P < .05). CONCLUSION: TLR3 and TLR9, the key factors of TLRs, are highly expressed in HaCaT cells infected with HPV. Through TLRs-IKK-e-IRFs-IFN signaling pathway, they can induce high expression of inflammatory factors, IKK-e, IRFs, and IFN, and improve immunity.
Assuntos
Células HaCaT/imunologia , Células HaCaT/virologia , Infecções por Papillomavirus/imunologia , Transdução de Sinais , Receptores Toll-Like/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Modelos Biológicos , Infecções por Papillomavirus/sangue , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/imunologia , Fator 3 Associado a Receptor de TNF/metabolismoRESUMO
Bees-including solitary, social, wild, and managed species-are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes-including intergenus transmission-and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.
Assuntos
Abelhas/virologia , Interações Hospedeiro-Patógeno , Vírus de RNA/fisiologia , Animais , Transmissão de Doença Infecciosa , Praguicidas , Vírus de RNA/patogenicidadeRESUMO
The inflammatory mechanisms that lead to the clinical symptoms that are grouped under the term inflammatory bowel disease have not been fully characterized. Although a specific mechanism has not been identified, inflammatory bowel disease is believed to be related to an inability by the immune system to shut active inflammation within the intestine. Many contributing factors have been implicated in the disease process. Based on population studies, patients with inflammatory bowel disease have an increased risk for neoplastic development. Although no specific immune cell has been implicated in neoplastic development within this patient population, several immune cells have been implicated as possible etiologies in inflammatory bowel disease. In this review, we will review the clinical evidence about the risk for neoplastic development in inflammatory bowel disease and the current clinical guidelines to survey this patient population. We will also review the pathologic assessment of inflammation within this patient population as well the underlying immune cells and cytokines that have been implicated in the etiology of inflammatory bowel disease.