Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Aging Phys Act ; 28(1): 1-8, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141428

RESUMO

We elucidated functional limitations in older adult gait by increasing horizontal impeding forces and walking speed to their maximums compared to dynamometry and to data from their young counterparts. Specifically, we investigated which determinants of push-off intensity represent genuine functionally limiting impairments in older adult gait versus biomechanical changes that do not directly limit walking performance. We found that older adults walked at their preferred speed with hallmark deficits in push-off intensity. These subjects were fully capable of overcoming deficits in propulsive ground reaction force, trailing limb positive work, trailing leg and hip extension, and ankle power generation when the propulsive demands of walking were increased to maximum. Of the outcomes tested, age-related deficits in ankle moment emerged as the lone genuine functionally limiting impairment in older adults. Distinguishing genuine functional limitations from age-related differences masquerading as limitations represents a critical step toward the development and prescription of effective interventions.


Assuntos
Fenômenos Biomecânicos , Marcha , Caminhada , Idoso , Envelhecimento , Articulação do Tornozelo , Humanos , Velocidade de Caminhada , Adulto Jovem
2.
J Appl Biomech ; 34(6): 474-482, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989477

RESUMO

Aging and many gait pathologies are characterized by reduced propulsive forces and ankle moment and power generation during trailing leg push-off in walking. Despite those changes, we posit that many individuals retain an underutilized reserve for enhancing push-off intensity during walking that may be missed using conventional dynamometry. By using a maximum ramped impeding force protocol and maximum speed walking, we gained mechanistic insight into the factors that govern push-off intensity and the available capacity thereof during walking in young subjects. We discovered in part that young subjects walking at their preferred speed retain a reserve capacity for exerting larger propulsive forces of 49%, peak ankle power of 43%, and peak ankle moment of 22% during push-off-the latter overlooked by maximum isometric dynamometry. We also provide evidence that these reserve capacities are governed at least in part by the neuromechanical behavior of the plantarflexor muscles, at least with regard to ankle moment generation. We envision that a similar paradigm used to quantify propulsive reserves in older adults or people with gait pathology would empower the more discriminate and personalized prescription of gait interventions seeking to improve push-off intensity and thus walking performance.

3.
J Appl Physiol (1985) ; 133(3): 766-776, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834628

RESUMO

The benefits of drafting for elite marathon runners are intuitive, but the quantitative energetic and time savings are still unclear due to the different methods used for converting aerodynamic drag force reductions to gross metabolic power savings. Further, we lack a mechanistic understanding of the relationship between aerodynamic drag forces and ground reaction forces (GRFs) over a range of running velocities. Here, we quantified how small horizontal impeding forces affect gross metabolic power and GRF over a range of velocities in competitive runners. In three sessions, 12 runners completed six 5-min trials with 5 min of recovery in-between. We tested one velocity per session (12, 14, and 16 km/h), at three horizontal impeding force conditions (0, 4, and 8 N) applied at the waist of the runners. On average, gross metabolic power increased by 6.13% per 1% body weight of horizontal impeding force but the increases varied considerably between individuals (4.17%-8.14%). With greater horizontal impeding force, braking GRF impulses decreased, whereas propulsive GRF impulses increased, but the impulses were not related to individual changes in gross metabolic power. Combining our findings with those of previous aerodynamics studies, we estimate that for a solo runner (52 kg) at 2-h marathon pace, overcoming aerodynamic drag force (1.39% BW) comprises 7.8% of their gross metabolic power and drafting can save between 3 min 42 s and 5 min 29 s.NEW & NOTEWORTHY We measured the metabolic and biomechanical effects of small horizontal impeding forces (representing realistic aerodynamic drag forces) on high-caliber runners across a range of velocities. Combining our metabolic results with existing aerodynamic models indicates that at 2-h marathon pace, optimal drafting likely allows a marathoner to run between 3 min 42 s and 5 min 29 s faster. Our rule-of-thumb (∼6% increase in gross metabolic power per 1% body weight of horizontal impeding force) will allow others to estimate the performance enhancement of different drafting formations.


Assuntos
Corrida de Maratona , Corrida , Fenômenos Biomecânicos , Peso Corporal , Metabolismo Energético , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA