RESUMO
2D materials are emerging as promising nanomaterials for applications in energy storage and catalysis. In the wet chemical synthesis of MXenes, these 2D transition metal carbides and nitrides are terminated with a variety of functional groups, and cations such as Li+ are often used to intercalate into the structure to obtain exfoliated nanosheets. Given the various elements involved in their synthesis, it is crucial to determine the detailed chemical composition of the final product, in order to better assess and understand the relationships between composition and properties of these materials. To facilitate atom probe tomography analysis of these materials, a revised specimen preparation method is presented in this study. A colloidal Ti3C2Tz MXene solution was processed into an additive-free free-standing film and specimens were prepared using a dual beam scanning electron microscope/focused ion beam. To mechanically stabilize the fragile specimens, they were coated using an in situ sputtering technique. As various 2D material inks can be processed into such free-standing films, the presented approach is pivotal for enabling atom probe analysis of other 2D materials.
RESUMO
All-solid-state lithium batteries (ASSBs) have received increasing attentions as one promising candidate for the next-generation energy storage devices. Among various solid electrolytes, sulfide-based ASSBs combined with layered oxide cathodes have emerged due to the high energy density and safety performance, even at high-voltage conditions. However, the interface compatibility issues remain to be solved at the interface between the oxide cathode and sulfide electrolyte. To circumvent this issue, we propose a simple but effective approach to magic the adverse surface alkali into a uniform oxyhalide coating on LiNi0.8Co0.1Mn0.1O2 (NCM811) via a controllable gas-solid reaction. Due to the enhancement of the close contact at interface, the ASSBs exhibit improved kinetic performance across a broad temperature range, especially at the freezing point. Besides, owing to the high-voltage tolerance of the protective layer, ASSBs demonstrate excellent cyclic stability under high cutoff voltages (500â cycles~94.0 % at 4.5â V, 200â cycles~80.4 % at 4.8â V). This work provides insights into using a high voltage stable oxyhalide coating strategy to enhance the development of high energy density ASSBs.
RESUMO
Due to the assets such as adequate discharge capacity and rational cost, LiNi0.8Co0.15Al0.05O2(NCA), a high-nickel ternary layered oxide, is regarded to be a favorable cathode contender for lithium-ion batteries. However, the superior commercial application is restricted by the surface residual alkaline lithium salt (LiOH or/and Li2CO3) of nickel-rich cathode materials, which will expedite the disintegration of the structure and the engendering of gas (CO2). Therefore, in this paper, we devise and fabricate a Y(PO3)3modified LiNi0.8Co0.15Al0.05O2(NCA), intending to optimize the surface residual alkaline lithium salt (antecedent deportation of H2O and CO2) while forming anin situtriple composite Li-ion conductor coating (Y(PO3)3-Li3PO4-YPO4) to enhance the electrochemical behavior. Under this method, the 2 mol% Y(PO3)3modified NCA electrode reveals exceptional rate capability (5 C/156.3 mAh g-1) and extraordinary cycle stability after 200 cycles (2 C/88.3%), whereas the original sample is only 5 C/123.1 mAh g-1and 2 C/71.2% after 200 cycles. Conspicuously, even under the draconian circumstances of the high temperature and the high rate at 55 °C/1 C, the 2 mol% Y(PO3)3modified NCA electrode sustains a high reversible capacity, with an admirable capacity retention rate of 89.4% after 100 cycles. These contented results signify that the surface remodeling tactic presents a viable scheme for ameliorating high-nickel materials' performance and appropriateness.
RESUMO
The improvement of pharmaceutical dosage forms, such as tablets, towards drug delivery control and cost efficiency is of great importance in formulation technologies. Here, three examples: in situ coating, freeze casting and protein-based biocomposites are presented that address the above mentioned issues and contribute to further developments in formulation technologies. The in situ coating increases the economic efficiency by saving process steps in comparison to a conventional tableting process and provides a crystalline coating for a tailorable drug delivery rate. The freeze casting allows the control over the surface area of a drug delivery system (DDS) by providing different numbers and sizes of pores, which in conjunction with adequate additives offer an efficient instrument for drug delivery control, especially by accelerating the dissolution effect. Protein-based biocomposites are attractive materials for biomedical and pharmaceutical applications that can be applied as a polymeric DDS. They inherently combine degradability in vivo and in vitro, show a good biocompatibility, offer sites of adhesion for cells and may additionally be used to release embedded bioactive molecules. Here, a new approach regarding the incorporation of crystalline active pharmaceutical ingredients (API) into a protein matrix in one process step is presented. All three presented techniques mark decisive progress towards tailor-made drug delivery systems with respect to function, economic efficiency and the generation of additional values.
Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Animais , Química Farmacêutica/tendências , Cristalização , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Congelamento , Humanos , Proteínas , ComprimidosRESUMO
AIM: Getting children to swallow tablets and capsules is a challenge, and factors that influence their ability to swallow include taste, smell and texture. The aim of this study was to explore how well paediatric patients tolerated and accepted the MedCoat(®) in situ coating for tablets and capsules. METHODS: A nonrandomised intervention study was performed at the Astrid Lindgren Children's Hospital, Karolinska University Hospital, Sweden. We identified 78 paediatric patients, 43 females and 35 males, who had problems swallowing tablets and capsules and evaluated their abilities with questionnaires. The median age of the patients was nine years old, and the range was two to 17 years old. RESULTS: Swallowing ability and palatability was improved by in situ coating. The results showed that 66 of 77 paediatric patients (86%, 95% confidence interval: 76-93%) were able to take the drugs they had been prescribed after in situ coating. Swallowing improved in 87% of cases, and palatability improved in 85% of cases. CONCLUSION: A study of 77 paediatric patients with a median age of nine years, and a range of two to 17 years, found that 86% were able to take the tablets and capsules they had been prescribed after they were coated with the MedCoat.
Assuntos
Cápsulas , Deglutição , Comprimidos , Adolescente , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Preferência do Paciente , Propriedades de Superfície , Inquéritos e Questionários , Suécia , PaladarRESUMO
The performance of zinc-air battery is constrained by the sluggish rate of oxygen electrode reaction, particularly under high current discharge conditions where the kinetic process of the oxygen reduction reaction (ORR) decelerates significantly. To address this challenge, we present a novel phase transition strategy that facilitates the creation of a heteroatom-doped heterointerface (CoN/CoS2). The meticulously engineered CoN/CoS2/NC electrocatalyst displays a superior ORR half-wave potential of 0.87â V and an OER overpotential of 320â mV at 10â mA cm-2. Experimental and computational analysis confirm that the CoN/CoS2 heterostructure optimizes local charge distribution, accelerates electron transfer, and tunes active sites for enhanced catalysis. Notably, this heterojunction improves stability by resisting corrosion and degradation under harsh alkaline conditions, thus demonstrating superior performance and longevity in a custom-made liquid zinc-air battery. This research provides valuable practical and theoretical foundations for designing efficient heterointerfaces in electrocatalysis applications.
RESUMO
Polyolefin separators with worse porous structures and compatibilities mismatch the internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study, a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize pore sizes and in situ-built SSD coatings on porous skeletons. Imported SSD uniformizes pore sizes owing to centralized interface distributions within casting films. Meanwhile, abundant cavitations enable the in situ SSD coating to facilely fix onto porous skeleton surfaces during separator fabrications, which feature simple techniques, low cost, environmental friendliness, and the capability for continuous fabrications. A sturdy SSD coating on the porous skeleton confines thermal shrinkages and offers a superior safety guarantee for LIBs. The abundant sulfonic acid groups of SSD endow PP@SSD with excellent electrolyte affinity, which lowers Li+ transfer barriers and optimizes interfacial compatibility. Therefore, assembled LIBs give the optimal C-rate capacity and cycling stability, holding a capacity retention of 82.7% after the 400th cycle at 0.5 C.
RESUMO
P2-type cobalt-free MnNi-based layered oxides are promising cathode materials for sodium-ion batteries (SIBs) due to their high reversible capacity and well chemical stability. However, the phase transformations during repeated (dis)charge steps lead to rapid capacity decay and deteriorated Na+ diffusion kinetics. Moreover, the electrode manufacturing based on polyvinylidene difluoride (PVDF) binder system has been reported with severely defluorination issue as well as the energy intensive and expensive process due to the use of toxic and volatile N-methyl-2-pyrrolidone (NMP) solvent. It calls for designing a sustainable, better performing, and cost-effective binder for positive electrode manufacturing. In this work, we investigated inorganic sodium metasilicate (SMS) as a viable binder in conjunction with P2-Na0.67Mn0.55Ni0.25Fe0.1Ti0.1O2 (NMNFT) cathode material for SIBs. The NMNFT-SMS electrode delivered a superior electrochemical performance compared to carboxy methylcellulose (CMC) and PVDF based electrodes with a reversible capacity of ~161â mAh/g and retaining ~83 % after 200 cycles. Lower cell impedance and faster Na+ diffusion was also observed in this binder system. Meanwhile, with the assistance of TEM technique, SMS is suggested to form a uniform and stable nanoscale layer over the cathode particle surface, protecting the particle from exfoliation/cracking due to electrolyte attack. It effectively maintained the electrode connectivity and suppressed early phase transitions during cycling as confirmed by operando XRD study. With these findings, SMS binder can be proposed as a powerful multifunctional binder to enable positive electrode manufacturing of SIBs and to overall reduce battery manufacturing costs.
RESUMO
Due to its high energy density, high-voltage LiCoO2 is the preferred cathode material for consumer electronic products. However, its commercial viability is hindered by rapid capacity decay resulting from structural degradation and surface passivation during cycling at 4.6 V. The key to achieving stable cycling of LiCoO2 at high voltages lies in constructing a highly stable interface to mitigate surface side reactions. In this study, we present a facile in situ coating strategy that is amenable to mass production through a simple wet-mixing process, followed by high-temperature calcination. By capitalizing on the facile dispersion characteristics of nano-TiO2 in ethanol and the ethanol dissolubility of LiPO2F2, we construct a uniform precoating layer on LiCoO2 with nano-TiO2 and LiPO2F2. The subsequent thermal treatment triggers an in situ reaction between the coating reagents and LiCoO2, yielding a uniform composite coating layer. This composite layer comprises spinel-structured compounds (e.g., LiCoTiO4) and Li3PO4, which exhibit excellent chemical and structural stability under high-voltage conditions. The uniform and stable coating layer effectively prevents direct contact between LiCoO2 and the electrolyte, thereby reducing side reactions and suppressing the surface passivation of LiCoO2 particles. As a result, coated LiCoO2 maintains favorable electronic and ionic conductivity even after prolonged cycling. The synergistic effects of spinel-structured compounds and Li3PO4 contribute to the superior performance of LiCoO2, demonstrating a high capacity of 202.1 mA h g-1 (3.0-4.6 V, 0.5 C, 1 C = 274 mA g-1), with a capacity retention rate of 96.7% after 100 cycles.
RESUMO
Ultrahigh Ni-rich quaternary layered oxides LiNi1-x-y-zCoxMnyAlzO2 (1 - x - y - z ≥ 0.9) are regarded as some of the most promising cathode candidates for lithium-ion batteries (LIBs) because of their high energy density and low cost. However, poor rate capacity and cycling performance severely limit their further commercial applications. Herein, an in situ coating strategy is developed to construct a uniform LiAlO2 layer. The NH4HCO3 solution is added to a NaAlO2 solution to form a weak alkaline condition, which can reduce the hydrolysis rate of NaAlO2, thus enabling uniform deposition of Al(OH)3 on the surface of a Ni0.9Co0.07Mn0.01Al0.02(OH)2 (NCMA) precursor. The LiAlO2-coated samples show enhanced cycling stability and rate capacity. The capacity retention of NCMA increases from 70.7% to 88.3% after 100 cycles at 1 C with an optimized LiAlO2 coating amount of 3 wt %. Moreover, the 3 wt % LiAlO2-coated sample also delivers a better rate capacity of 162 mAh g-1 at 5 C, while that of an uncoated sample is only 144 mAh g-1. Such a large improvement of the electrochemical performance should be attributed to the fact that a uniform LiAlO2 coating relieves harmful interfacial parasitic reactions and stabilizes the interface structure. Therefore, this in situ coating approach is a viable idea for the design of higher-energy-density cathode materials.
RESUMO
Prussian blue (PB) has great potential for use as a sodium cathode material owing to its high working potential and cube frame structure. Herein, this work reports a two-step method to synthesize PB with ascorbic acid as the ball-milling additive, which improves the electrochemical rate performance of PB during the traditional co-precipitation method. The obtained PB sample exhibited a superior specific capability (113.3 mAh g-1 even at 20 C, 1 C = 170 mA g-1) and a specific capacity retention of 84.8% after 100 cycles at 1 C rate. In order to enhance the cycling performance of the PB, an in situ polyaniline coating strategy was employed in which aniline was added into the electrolyte and polymerized under electrochemical conditions. The coated anode exhibited a high specific capacity retention of 62.7% after 500 cycles, which is significantly higher than that of the non-coated sample, which only remains 40.1% after 500 cycles. This development has shown a great potential as a low-cost, high-performance and environment-friendly technology for large-scale industrial application of PB.
RESUMO
The instability and low inferior catalytic activity of metal-halide perovskite nanocrystals are crucial issues for promoting their practical application in the photocatalytic field. Herein, we in situ coat a thin graphdiyne (GDY) layer on CsPbBr3 nanocrystals based on a facile microwave synthesis method, and employ it as a photocatalyst for CO2 reduction. Under the protection of GDY, the CsPbBr3-based photocatalyst delivers significantly improved stability in a photocatalytic system containing water concomitant with enhanced CO2 uptake capacity. The favorable energy offset and close contact between CsPbBr3 and GDY trigger swift photogenerated electron transfer from CsPbBr3 to doping metal sites in GDY, boosting a remarkable improvement in the photocatalytic performance for CO2 reduction. Without adding traditional sacrificial reductants, the cobalt-doped photocatalyst achieves a high yield of 27.7 µmol g-1 h-1 for photocatalytic CO2 conversion to CO based on water as a desirable electron source, which is about 8 times higher than that of pristine CsPbBr3 nanocrystals.
RESUMO
Sodium-ion batteries (SIBs) have shown great superiority for grid-scale storage applications because of their low cost and the abundance of sodium. P2-type Na2/3Ni1/3Mn2/3O2 cathode materials have attracted much attention for their high capacities and operating voltages as well as their simple synthesis processes. However, Na+/vacancy ordering and the P2-O2 phase transition are unavoidable during Na+ insertion/extraction, leading to undesired voltage plateaus and deficient battery performances. We show that this defect can be effectually eliminated by coating a moderate Na+ conductor Na2Ti3O7 with a smart in situ coating approach and a concomitant doping of Ti4+ into the bulk structure. Based on the combined analysis of ex situ X-ray diffraction, scanning electron microscopy, electrochemical performance tests, and electrochemical kinetic analyses, Na2Ti3O7 coating and Ti4+ doping effectively refrain Na+/vacancy ordering and P2-O2 phase transition during cycling. Additionally, the Na2Ti3O7 coating layer suppresses particle exfoliation and accelerates Na+ diffusion at the cathode and electrolyte interface. Hence, Na2Ti3O7-coated Na2/3Ni1/3Mn2/3O2 exhibits excellent cycling stability (almost no capacity decay after 200 cycles at 5 C) and outstanding rate capability (31.1% of the initial capacity at a high rate of 5 C compared to only 10.4% for the pristine electrode). This coating strategy can provide a new guide for the design of prominent cathode materials for SIBs that are suitable for practical applications.
RESUMO
Being considered as one of the most potential cathode materials, Li1.15Ni0.17Co0.11Mn0.57O2 draws plenty of attention towards its optimization on cycling and rate performance. The surface coating process provides a longer cycling life and better rate performance for the cathodes. A systematic investigation has been carried out on the nano-AlPO4 coating layer for the Li1.15Ni0.17Co0.11Mn0.57O2 cathode material through a facile in situ dispersion process. The 1% coated cathode material can hold about 90% capacity retention after 100 cycles. Besides, the surface coating enhances the rate ability of Li1.15Ni0.17Co0.11Mn0.57O2, which holds a reversible capacity of 202.3 mAh g-1 at the rate of 1C. Surface information is collected during cycling, which reveals that less side reactions occur on the electrode-electrolyte interface after the coating process for improved cycling and rate performance.
RESUMO
Applications of liposomes are limited due to their rapid blood clearance and non-specific biodistribution. Surface modification of liposomes could overcome these disadvantages. However, direct coating of liposome surface may cause disruption of liposomes. Herein we present a "top-down" method to coat liposomes in situ with tumor (CD44 receptor) targeting polymer, hyaluronan (HA), by taking advantages of "click" type chemistries and enzymatic degradation. Liposomes entrapped within HA gel were stable without leaking of small cargo molecules from the interior of the liposomes. This injectable liposome-in-hydrogel (lipogel) drug delivery system can achieve sequential two-step release: (1) liposomes release from lipogel after HA degradation; (2) small molecules release from liposomes after the liposomes disruption (either before or after cellular uptake). Similarly to HA coating, this strategy could be used for in situ "top-down" modification of liposomes with other targeting biopolymers. Additionally, it provides the possibility to deliver different types of molecules from two compartments of the lipogel, i.e. large biomacromolecules from the exterior of liposomes and small hydrophilic molecules from the interior of liposomes, locally and systemically.