Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Pharm Res ; 41(2): 355-363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38133717

RESUMO

OBJECTIVE: This study aimed to determine the impact of formulation (gel vs cream) and microneedle characteristics (length, number) on permeation of metronidazole through excised microneedle-treated skin. The long-term goal is to apply these results towards a pharmacokinetic study in human subjects with diverse skin types, using in vitro flux data to determine dosing conditions and ultimately establish in vitro-in vivo correlations. METHODS: Metronidazole release from 0.75% gel and cream was quantified with flow-through diffusion cells, using a cellulose membrane. Excised porcine skin was treated with stainless steel microneedles (500 or 800 µm length), to create 50 or 100 micropores. Metronidazole gel or cream was applied to microneedle-treated skin and replaced every 48 h for up to 7 days. Metronidazole permeation was quantified using HPLC. Intact skin (no microneedle treatment) served as controls. RESULTS: Metronidazole release was faster from the gel vs cream. At 7 days there was no difference between gel vs cream in total metronidazole permeated through intact skin. For both formulations, metronidazole permeation was significantly higher (vs intact skin) following microneedle application, regardless of microneedle length or micropore number. Increasing microneedle length and micropore number enhanced MTZ permeation multiple fold for both gel and cream. The greatest enhancement in total permeation for both formulations was achieved with the 800 µm MN, 100 micropore condition. CONCLUSIONS: Formulation and microneedle conditions both impacted metronidazole permeation. These data will be used to estimate in vivo serum concentrations after applying metronidazole to microneedle-treated skin in humans.


Assuntos
Metronidazol , Absorção Cutânea , Animais , Suínos , Humanos , Metronidazol/metabolismo , Pele/metabolismo , Administração Cutânea , Agulhas , Sistemas de Liberação de Medicamentos/métodos
2.
Pharm Dev Technol ; 29(5): 468-476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662798

RESUMO

Carboxylesterase enzymes convert a prodrug ramipril into the biologically active metabolite ramiprilat. It is prescribed for controlling ocular hypertension after oral administration. High concentrations of carboxylesterase enzymes in rectal and colon tissue can transform ramipril significantly to ramiprilat. Sustained rectal delivery of ramipril has been developed for intra-ocular pressure lowering effect using a normotensive rabbit model. Rectal suppositories have been formulated using a matrix base of HPMC K100-PEG 400-PEG 6000, incorporating varying amounts of Gelucire by the fusion moulding method. The presence of Gelucire in the suppository exhibited sustained structural relaxation-based release kinetics of RM compared to its absence. Intravenous and oral administration of ramipril has decreased IOP in the treated rabbit up to 90 and 360 min, respectively. Treated rabbits with suppositories have revealed decreased IOP for an extended period compared to the above. Formulation containing GEL 3% reduced intra-ocular pressure to 540 min, with the highest area under the decreased IOP curve. Compared to oral, the pharmacodynamic bioavailability of ramipril has been improved significantly using a sustained-release rectal suppository. A rectal suppository for sustained delivery of ramipril could be used to lower IOP significantly.


Assuntos
Administração Retal , Preparações de Ação Retardada , Pressão Intraocular , Pró-Fármacos , Ramipril , Animais , Coelhos , Pressão Intraocular/efeitos dos fármacos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ramipril/administração & dosagem , Ramipril/farmacocinética , Ramipril/farmacologia , Supositórios , Masculino , Disponibilidade Biológica , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacocinética , Anti-Hipertensivos/farmacologia , Lipídeos/química , Liberação Controlada de Fármacos , Administração Oral , Polietilenoglicóis
3.
BMC Vet Res ; 19(1): 81, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391757

RESUMO

The objective of this study was to synthesize and characterize pharmaceutical characteristics of florfenicol sustained-release granules (FSRGs) in vitro and in vivo. FSRGs were synthesized using monostearate, polyethylene glycol 4000 and starch. In vitro dissolution profiles were studied using the rotating basket method in pH 1.2 HCl solution and pH 4.3 acetate buffer. Twenty-four male healthy Landrace×Yorkshire pigs were equally divided into three groups and administered a 20 mg/kg i.v bolus of florfenicol solution and dosed orally with FSRGs in the fasting and fed states. The Higuchi model was the best fit for the drug release profile in pH 1.2 and pH 4.3 media, and the mechanism of drug dissolution was governed by both diffusion and dissolution. We established a level A in vitro - in vivo correlation for FSRGs and the in vivo profile of the FSRGs can be estimated by the in vitro drug release.


Assuntos
Projetos de Pesquisa , Tianfenicol , Masculino , Animais , Suínos , Correlação de Dados , Preparações de Ação Retardada
4.
Biol Pharm Bull ; 46(8): 1088-1097, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245965

RESUMO

Clindamycin phosphate (CLP) is a broad-spectrum antibiotic that is used widely for different types of infections. It has a short half-life and hence it should be taken every six hours to ensure adequate antibiotic blood concentration. On the other hand, microsponges are extremely porous polymeric microspheres, offering the prolonged controlled release of the drug. The present study aims to develop and evaluate innovative CLP-loaded microsponges (named Clindasponges) to prolong and control the drug release and enhance its antimicrobial activity, consequently improving patient compliance. The clindasponges were fabricated successfully by quasi-emulsion solvent diffusion technique using Eudragit S100 (ES100) and ethyl cellulose (EC) as carriers at various drug-polymer ratios. Several variables were optimized for the preparation technique including the type of solvent, stirring time, and stirring speed. The clindasponges were then characterized in terms of particle size, production yield, encapsulation efficiency, scanning electron microscopy, Fourier Transform Infrared Spectroscopy analysis, in vitro drug release with kinetic modeling, and antimicrobial activity study. Moreover, in vivo, pharmacokinetics parameters of CLP from the candidate formula were simulated based on the convolution method and in vitro-in vivo correlation (IVIVC-Level A) was built up successfully. Uniform spherical microsponges with 82.3 µm mean particle size with a porous spongy structure were evident. ES2 batch exhibited the highest production yield and encapsulation efficiency (53.75 and 74.57%, respectively) and it was able to exhaust 94% of the drug at the end of 8 h of the dissolution test. The release profile data of ES2 was best fitted to Hopfenberg kinetic model. ES2 was significantly (p < 0.05) effective against Staphylococcus aureus and Escherichia coli compared to the control. Also, ES2 displayed a twofold increase in the simulated area under the curve (AUC) compared to the reference marketed product.


Assuntos
Clindamicina , Sistemas de Liberação de Medicamentos , Humanos , Sistemas de Liberação de Medicamentos/métodos , Clindamicina/farmacologia , Antibacterianos/farmacologia , Polímeros , Solventes , Tamanho da Partícula , Microesferas
5.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569704

RESUMO

This study aimed to develop extended-release tablets containing 25 mg IMM-H014, an original drug formulated by a direct powder pressing method based on pharmaceutical-grade hydrophilic matrix polymers such as hydroxypropyl methylcellulose, to establish an in vitro-in vivo correlation (IVIVC) to predict bioavailability. The tablets' mechanical properties and in vitro and in vivo performance were studied. The formulation was optimized using a single-factor experiment and the reproducibility was confirmed. The in vitro dissolution profiles of the tablet were determined in five dissolution media, in which the drug released from the hydrophilic tablets followed the Ritger-Peppas model kinetics in 0.01 N HCl medium for the first 2 h, and in phosphate-buffered saline medium (pH 7.5) for a further 24 h. Accelerated stability studies (40 °C, 75% relative humidity) proved that the optimal formulation was stable for 6 months. The in vivo pharmacokinetics study in beagle dogs showed that compared to the IMM-H014 immediate release preparation, the maximum plasma concentration of the extended-release (ER) preparation was significantly decreased, while the maximum time to peak and mean residence time were significantly prolonged. The relative bioavailability was 97.9% based on the area under curve, indicating that the optimal formulation has an obvious ER profile, and a good IVIVC was established, which could be used to predict in vivo pharmacokinetics based on the formulation composition.


Assuntos
Hepatopatias , Animais , Cães , Reprodutibilidade dos Testes , Comprimidos/farmacocinética , Preparações de Ação Retardada/química , Disponibilidade Biológica , Solubilidade
6.
Molecules ; 28(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836805

RESUMO

As a subclass of the biopharmaceutical classification system (BCS) class II, basic drugs (BCS IIB) exhibit pH-dependent solubility and tend to generate supersaturation in the gastrointestinal tract, leading to less qualified in vitro-in vivo correlation (IVIVC). This study aims to develop a physiologically based multi-cup dissolution approach to improve the evaluation of the supersaturation for a higher quality of IVIVC and preliminarily explores the molecular mechanism of supersaturation and precipitation of ketoconazole affected by Polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA) and hydroxypropyl methyl-cellulose (HPMC). The concentration of ketoconazole in each cup of the dynamic gastrointestinal model (DGIM) was measured using fiber optical probes. Molecular interactions between ketoconazole and PVPVA or HPMC were simulated by Materials Studio. The results demonstrated that PVPVA and HPMC improved and maintained the supersaturation of ketoconazole. PVPVA exhibited superior precipitation inhibitory effect on ketoconazole molecule aggregation due to slightly stronger van der Waals forces as well as unique electrostatic forces, thereby further enhancing in vitro drug absorption, which correlated well with in vivo drug absorption. Compared with a conventional dissolution apparatus paddle method, the DGIM improved the mean prediction error through the IVIVC from 19.30% to 9.96%, reaching the qualification criteria. In conclusion, the physiologically based multi-cup dissolution approach enables improved evaluation of supersaturation in gastrointestinal transportation of BCS IIB drug ketoconazole, enabling screening screen precipitation inhibitors and achieving qualified IVIVC for drug formulation studies.


Assuntos
Produtos Biológicos , Cetoconazol , Solubilidade , Cetoconazol/farmacologia , Simulação de Dinâmica Molecular , Produtos Biológicos/farmacologia , Absorção Intestinal , Administração Oral
7.
Drug Metab Rev ; 54(4): 427-448, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369949

RESUMO

Aldehyde oxidase (AO) has garnered curiosity as a non-CYP metabolizing enzyme in drug development due to unexpected consequences such as toxic metabolite generation and high metabolic clearance resulting in the clinical failure of new drugs. Therefore, poor AO mediated clearance prediction in preclinical nonhuman species remains a significant obstacle in developing novel drugs. Various isoforms of AO, such as AOX1, AOX3, AOX3L1, and AOX4 exist across species, and different AO activity among humans influences the AO mediated drug metabolism. Therefore, carefully considering the unique challenges is essential in developing successful AO substrate drugs. The in vitro to in vivo extrapolation underpredicts AO mediated drug clearance due to the lack of reliable representative animal models, substrate-specific activity, and the discrepancy between absolute concentration and activity. An in vitro tool to extrapolate in vivo clearance using a yard-stick approach is provided to address the underprediction of AO mediated drug clearance. This approach uses a range of well-known AO drug substrates as calibrators for qualitative scaling new drugs into low, medium, or high clearance category drugs. So far, in vivo investigations on chimeric mice with humanized livers (humanized mice) have predicted AO mediated metabolism to the best extent. This review addresses the critical aspects of the drug discovery stage for AO metabolism studies, challenges faced in drug development, approaches to tackle AO mediated drug clearance's underprediction, and strategies to decrease the AO metabolism of drugs.


Assuntos
Aldeído Oxidase , Descoberta de Drogas , Humanos , Animais , Camundongos , Aldeído Oxidase/metabolismo , Taxa de Depuração Metabólica , Fígado/metabolismo , Desenvolvimento de Medicamentos , Aldeído Oxirredutases/metabolismo
8.
Biol Pharm Bull ; 45(3): 364-373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228402

RESUMO

Bioequivalence has been assessed using in vitro dissolution testing, such as in vivo predictive dissolution methodology. However, the assessment of bioequivalence should be performed carefully, considering the effect of the in vivo environment and according to the properties of the drug. The gastric emptying process is a key factor for the assessment of biopharmaceutics classification system class II (BCS class IIa) drugs with acidic properties since they cannot dissolve in the acidic stomach, but do dissolve in the small intestine (SI). The disintegration of a tablet in the stomach affects the distribution/dissolution in the SI due to the difference in the gastric emptying step, which in turn is a result of the varying formulation of the drugs. In this study, we used the reported dynamic pH change method and a novel gastric process simulation (GPS) model, which can compare the gastric emptying of particular-sized drug particles. The in vitro results were compared to clinical data using bioequivalent and bioinequivalent products of candesartan cilexetil. It was revealed that the dynamic pH change method was inappropriate, whereas the amount of filtered drug in GPS studies with 20 and 50 µm pore size filters could reflect the clinical results of all products. The evaluation of the gastric emptying process of drug particles less than 50 µm enabled us to assess the bioequivalence because they probably caused the difference in the distribution in the SI. This study demonstrated the utility of the GPS model for the assessment of bioequivalence of BCS class IIa drugs.


Assuntos
Biofarmácia , Estômago , Biofarmácia/métodos , Simulação por Computador , Solubilidade , Equivalência Terapêutica
9.
Drug Dev Ind Pharm ; 48(8): 397-405, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36048002

RESUMO

The solubility of glimepiride (GM) was improved from 1.6 µg/mL to 22.0 mg/mL when GM and meglumine (MU) complexes were prepared. Therefore, transdermal hydrogels of GM Carbopol (GM-CP) and GM hydroxypropyl methylcellulose pullulan (GM-HPMC-Pu) were prepared successfully utilizing the improved drug solubility by GM-MU. Based on a single factor experiment and response surface methodology, two kinds of hydrogel formulations were optimized by drug release studies in vitro. The optimized GM-CP hydrogel was composed of GM, a mixture of azone and oleic acid (1:1, 2.6%, v/v) and carbopol 940 (1%, w/v). The GM-HPMC-Pu hydrogel was developed using GM, HPMC (3.5%, w/v), Pu (1.5%, w/v), glycerol (5%, v/v), azone (2.9%, v/v) and oleic acid (2.6%, v/v). The study of hydrogels in vivo was performed using rabbits. The results indicated that the drug could sustain release from GM-CP or GM-HPMC-Pu hydrogel and maintain the high plasma concentration for 48 h. Compared with commercial GM tablets, the relative bioavailability of GM-CP and GM-HPMC-Pu hydrogel reached 48% and 133%, respectively. Moreover, the drug release in vitro could well predict its absorption in vivo. There was a good correlation (R2≥0.966) in GM hydrogel between the drug release in vitro and transdermal absorption in vivo. Therefore, a novel GM hydrogel dosage form may be considered to design.


Assuntos
Hidrogéis , Ácido Oleico , Animais , Coelhos , Administração Cutânea , Compostos de Sulfonilureia
10.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566178

RESUMO

Tianeptine tablets are currently marketed to be designed for immediate-release tablets. The tianeptine has a short half-life, making it difficult to design for sustained-release tablets and achieve bioequivalence with the tianeptine immediate-release tablet (Stablon®). We established the in vitro-in vivo correlation (IVIVC) of three formulations of tianeptine sustained-release tablets according to their granule size. To evaluate sustained drug release, in vitro tests were performed in pH 1.2 media for 24 h. In vivo pharmacokinetic analysis was performed following oral administration of reference drug and test drug to beagle dogs. The dissolution profile revealed delayed release as the size of the granules increased. The dissolution results were confirmed in pharmacokinetic analysis, showing that the half-life was delayed as granule size increased. The final formulation and reference drug showed an equivalent area under the curve (AUC). Through this, IVIVC was established according to the size of the tianeptine sodium granules, which is the purpose of this study, and was used to predict in vivo pharmacokinetics from the formulation composition. This approach may be useful for determining optimal formulation compositions to achieve the desired pharmacokinetics when developing new formulations.


Assuntos
Tiazepinas , Animais , Área Sob a Curva , Preparações de Ação Retardada/farmacocinética , Cães , Sódio , Solubilidade , Comprimidos/química
11.
Compr Rev Food Sci Food Saf ; 21(5): 3804-3833, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880687

RESUMO

The application of dynamic in vitro gastrointestinal (GI) models has grown in popularity to understand the impact of food structure and composition on human health. Given that GI motility is integral to digestion and absorption, a predictive in vitro model should faithfully replicate the motility patterns and motor functions in vivo. In this review, typical characteristics of gastric and small intestinal motility in humans as well as the biomechanical and hydrodynamic events pertinent to gut motility are summarized. The simulation of GI motility in the presently existing dynamic in vitro models is discussed from an engineering perspective and categorized into hydraulic, piston/probe-driven, roller-driven, pneumatic, and other systems. Each system and its representative models are evaluated in terms of their motility patterns, the key hydrodynamic characteristics concerning gut motility, their performance in simulating the key physiological events, and their ability to establish in vitro-in vivo correlations. Practical Application: The review paper provided useful information in the design of dynamic GI models and the simulation of human gastric and small intestinal motility which are important for understanding food and health.


Assuntos
Motilidade Gastrointestinal , Trato Gastrointestinal , Motilidade Gastrointestinal/fisiologia , Humanos , Estômago
12.
AAPS PharmSciTech ; 23(7): 258, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123513

RESUMO

In vitro-in vivo correlation (IVIVC) analysis reveals a relationship between in vitro release and in vivo pharmacokinetic response of the drug of interest. Sandostatin LAR Depot (SLD) for endocrine tumors and acromegaly is a sustained-release formulation of octreotide, a cyclic oligomer of 8 amino acids, which prolongs therapeutic efficacy and enhances medication compliance of octreotide. Since the efficacy of SLD is dependent on the pharmacokinetic characteristics of octreotide released from a biodegradable matrix polymer, poly(lactide-co-glycolide)-glucose, of SLD, the IVIVC of SLD is critical for predicting an in vivo behavior of the octreotide. In this study, in vitro release of octreotide from SLD was investigated using the release test media each containing 0.02% or 0.5% surfactant and having different pH values of 7.4 and 5.5. In vivo pharmacokinetic profiles of SLD were determined by LC-MS/MS analysis of the systemic blood concentration of octreotide after the SLD injection to rodents. In IVIVC analysis, the Weibull model was adopted as a drug release model for biodegradable microsphere formulation. The IVIVC analyses revealed the in vitro release test condition of SLD with the highest IVIV correlation coefficient. By applying the in vitro release data to the model derived from the IVIVC analysis, pharmacokinetic parameters of SLD could be predicted with the prediction error of ± 10 ~ 15%. IVIVC analysis and pharmacokinetic prediction model of SLD in our study can be an efficient tool for the development of long-acting pharmaceutical dosage forms.


Assuntos
Glucose , Octreotida , Aminoácidos , Cromatografia Líquida , Preparações de Ação Retardada/farmacocinética , Microesferas , Poliglactina 910 , Tensoativos , Espectrometria de Massas em Tandem
13.
AAPS PharmSciTech ; 23(4): 108, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35386066

RESUMO

The objective of the study was to predict pharmacokinetic (PK) and pharmacodynamic (PD) parameters of matrix-based modified release (MR) drug product of vildagliptin. Physiologically based biopharmaceutics modeling (PBBM) was developed using GastroPlus™ based on the available data including immediate-release (IR) drug product of vildagliptin. In vitro-in vivo correlation (IVIVC) was developed using mechanistic deconvolution to predict plasma concentration-time profile and PK parameters for a MR drug product planned for clinical use. Both methods, i.e., PBBM and IVIVC, were compared for the predicted PK parameters. Integration of DDDPlus™ and GastroPlus™ modeling was performed to explore clinically relevant dissolution specifications for vildagliptin MR tablets. The bioequivalence (BE) between batches with different dissolution specifications was evaluated using virtual clinical trials. The PD effect of dipeptidyl peptidase-IV (DPP-IV) inhibition was simulated utilizing PDPlus™ model in GastroPlus™. The results indicated that IVIVC best correlated the simulated PK parameters with those observed with the clinical study. The outcomes highlight the importance of integration of in vitro and in silico tools towards predictability of PK and PD parameters for a MR drug product. However, the post absorptive phase was found to be more dependent on the demographics of the healthy subjects.


Assuntos
Biofarmácia , Modelos Biológicos , Biofarmácia/métodos , Simulação por Computador , Humanos , Solubilidade , Comprimidos , Vildagliptina
14.
Pharm Res ; 38(9): 1601-1613, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34463937

RESUMO

PURPOSE: To develop an in vitro method to rapidly evaluate regional lung doses delivered by pharmaceutical inhalers. Currently, cascade impactor measurements are used, but these are resource intensive and require significant post processing of in vitro data to arrive at regional deposition estimates. METHODS: We present a specialized filter apparatus that mimics tracheobronchial (TB) deposition of pharmaceutical aerosols emitted by commercially available dry powder inhalers (DPIs). The filter housing includes an electrostatic neutralizer to eliminate artificial electrostatic filtration effects. Regional deposition (tracheobronchial and alveolar) for four DPIs (Onbrez Breezhaler, Flovent Diskus, Pulmicort Turbuhaler, and Asmanex Twisthaler) was estimated using cascade impactor measurements and an in silico regional deposition model. These estimates were compared to direct measurements of regional deposition as provided by the TB filter mimic and an absolute filter placed downstream of the TB filter housing, representing the alveolar dose. RESULTS: The two methods were shown to provide similar estimates of extrathoracic, tracheobronchial, and alveolar deposition, as well as total recovery of active pharmaceutical ingredients. CONCLUSIONS: Because of its design, the TB filter apparatus makes it possible to estimate regional deposition with inhalers directly using variable inhalation profiles without any additional equipment or changes to the experimental configuration. This method may be useful to expedite development of both innovative and generic drug products as it provides regional respiratory tract deposition estimates using fewer resources than exisiting methods.


Assuntos
Broncodilatadores/metabolismo , Pulmão/metabolismo , Pós/metabolismo , Administração por Inalação , Aerossóis/metabolismo , Budesonida/metabolismo , Simulação por Computador , Inaladores de Pó Seco/métodos , Desenho de Equipamento/métodos , Fluticasona/metabolismo , Humanos , Faringe/metabolismo
15.
Part Fibre Toxicol ; 18(1): 25, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301283

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNT) have received attention due to extraordinary properties, resulting in concerns for occupational health and safety. Costs and ethical concerns of animal testing drive a need for in vitro models with predictive power in respiratory toxicity. The aim of this study was to assess pro-inflammatory response (Interleukin-8 expression, IL-8) and genotoxicity (DNA strand breaks) caused by MWCNT with different physicochemical properties in different pulmonary cell models and correlate these to previously published in vivo data. Seven MWCNT were selected; two long/thick (NRCWE-006/Mitsui-7 and NM-401), two short/thin (NM-400 and NM-403), a pristine (NRCWE-040) and two surface modified; hydroxylated (NRCWE-041) and carboxylated (NRCWE-042). Carbon black Printex90 (CB) was included as benchmark material. Human alveolar epithelial cells (A549) and monocyte-derived macrophages (THP-1a) were exposed to nanomaterials (NM) in submerged conditions, and two materials (NM-400 and NM-401) in co-cultures of A549/THP-1a and lung fibroblasts (WI-38) in an air-liquid interface (ALI) system. Effective doses were quantified by thermo-gravimetric-mass spectrometry analysis (TGA-MS). To compare genotoxicity in vitro and in vivo, we developed a scoring system based on a categorization of effects into standard deviation (SD) units (< 1, 1, 2, 3 or 4 standard deviation increases) for the increasing genotoxicity. RESULTS: Effective doses were shown to be 25 to 53%, and 21 to 57% of the doses administered to A549 and THP-1a, respectively. In submerged conditions (A549 and THP-1a cells), all NM induced dose-dependent IL-8 expression. NM-401 and NRCWE-006 caused the strongest pro-inflammatory response. In the ALI-exposed co-culture, only NM-401 caused increased IL-8 expression, and no DNA strand breaks were observed. Strong correlations were found between in vitro and in vivo inflammation when doses were normalized by surface area (also proxy for diameter and length). Significantly increased DNA damage was found for all MWCNT in THP-1a cells, and for short MWCNT in A549 cells. A concordance in genotoxicity of 83% was obtained between THP-1a cells and broncho-alveolar lavaged (BAL) cells. CONCLUSION: This study shows correlations of pro-inflammatory potential in A549 and THP-1a cells with neutrophil influx in mice, and concordance in genotoxic response between THP-1a cells and BAL cells, for seven MWCNT.


Assuntos
Nanotubos de Carbono , Células A549 , Células Epiteliais Alveolares , Animais , Dano ao DNA , Humanos , Pulmão , Camundongos , Nanotubos de Carbono/toxicidade
16.
Xenobiotica ; 51(9): 968-976, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134599

RESUMO

The in vitro antitumor activity (e.g. IC50) of anticancer drugs is important for selecting candidate compounds for in vivo drug efficacy study in the early stage of drug discovery. In this study, we investigated the relationship between in vitro IC50 and in vivo EC50 using six heat shock protein 90 (HSP90) inhibitors.IC50 of each compound was calculated from in vitro cell proliferation assays using the NCI-N87 cancer cell line. Each compound was administered to NCI-N87 xenograft mice, and EC50 and the maximum tumour-killing rate constant were calculated from pharmacokinetics/pharmacodynamics analyses using plasma concentrations and tumour volumes.IC50 obtained in vitro was poorly correlated with EC50 obtained in vivo, while a good correlation (r = 0.856) was observed between them when corrected with the unbound fraction ratio.The results of this study using of HSP90 inhibitors as model compounds suggest importance of the consideration of an unbound fraction to evaluate the relationship between IC50 and EC50. These results will contribute to improvement in the prediction accuracy of in vivo drug efficacy from in vitro activity and the efficiency of drug discovery research.


Assuntos
Antineoplásicos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Choque Térmico HSP90/farmacologia , Xenoenxertos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Xenobiotica ; 51(9): 1060-1070, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34330191

RESUMO

Nonclinical metabolite profiling of DS-1971a, a potent selective NaV1.7 inhibitor, was performed to predict human metabolites.After the oral administration of radiolabelled DS-1971a, the predominant metabolite in mouse plasma was M4, a monoxide at the pyrimidine ring, while the major metabolites with the first and second highest exposure in monkey plasma were M2, a monoxide at the cyclohexane ring, and M11, a demethylated pyrazole metabolite.Incubation studies with liver cytosolic and microsomal fractions in the absence or presence of NADPH indicated that the metabolising enzyme responsible for M4 formation was aldehyde oxidase (AO), while cytochrome P450s (P450s) were responsible for M2 and M11 formation. These results suggest that DS-1971a is a substrate for both AO and P450.When DS-1971a was incubated with liver S9 fractions and NADPH, the most abundant metabolites were M4 in mice, and M2 and M11 in monkeys, indicating that the results of in vitro incubation studies could provide information reflecting the in vivo plasma metabolite profiles in mice and monkeys. The results obtained from the incubation with the human liver S9 fraction and NADPH suggested that a major circulating metabolite in humans is M1, a regioisomer of M2.


Assuntos
Aldeído Oxidase , Microssomos Hepáticos , Aldeído Oxidase/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Taxa de Depuração Metabólica , Camundongos , Microssomos Hepáticos/metabolismo , Especificidade da Espécie
18.
J Appl Toxicol ; 41(7): 1038-1049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33085125

RESUMO

Recent research on in vitro systems has focused on mimicking the in vivo situation of cells within the respiratory system. However, few studies have predicted inhalation toxicity using conventional and simple submerged two-dimensional (2D) cell culture models. We investigated the conventional submerged 2-D cell culture model as a method for the prediction of acute inhalation toxicity. Median lethal concentration (LC50 ) (rat, inhalation, 4 h) and half maximal inhibitory concentration (IC50 ) (lung or bronchial cell, 24 h) data for 59 substances were obtained from the literature and by experiments. Cytotoxicity assays were performed on 44 substances with reported LC50 , but without IC50 , data to obtain the IC50 values. A weak correlation was observed between the IC50 and LC50 of all substances. Semi-volatile organic compounds (SVOCs) and non-VOCs (NVOCs) (16 substances) with a water solubility of ≥1 g/L were strongly correlated between 24-h IC50 and 4-h LC50 , and this had an excellent predictive ability to distinguish between Categories 1-3 and 4 (Globally Harmonized System classification for acute inhalation toxicity). Our results suggest that the submerged 2-D cell culture model may be used to predict in vivo acute inhalation toxicity for substances with a water solubility of ≥1 g/L in SVOCs and NVOCs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Testes de Toxicidade/métodos , Administração por Inalação , Alternativas aos Testes com Animais , Animais , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Dose Letal Mediana , Ratos
19.
COPD ; 18(1): 91-100, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33302718

RESUMO

Tiotropium and olodaterol are mainstay treatments for chronic obstructive pulmonary disease (COPD) and yield important clinical improvements, especially when used in fixed-dose combination. Whilst previous studies have shown consistent delivery of tiotropium to the lungs with the Respimat® inhaler, no such study has been carried out for olodaterol or the components of their fixed-dose combination (TIO/OLO). Combining in vitro and in silico models, we measured the amount of drug retained in the mouth-throat area, entering the trachea and reaching the lung periphery. We applied a hybrid deposition model that considered the experimentally determined output of an Alberta throat model (in vitro - dose to lung) combined with a computational fluid dynamic model of the lungs (in silico). Regardless of the COPD breathing pattern, ≥50% of the nominal dose of either tiotropium, olodaterol, or TIO and OLO in the fixed-dose combination reached the lung. Of the dose reaching the lungs, greater than 50% is deposited in the lung periphery (from generation 8 onwards). Our study demonstrated that aerosol delivery via the Respimat inhaler achieved high deposition deep into the lung periphery with all formulations evaluated.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Benzoxazinas , Broncodilatadores/uso terapêutico , Simulação por Computador , Humanos , Pulmão , Nebulizadores e Vaporizadores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Brometo de Tiotrópio/uso terapêutico
20.
AAPS PharmSciTech ; 22(7): 224, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410534

RESUMO

Pharmacokinetic differences between manufacturing batches, well established for inhaled drug products, preclude control of patient risk in the customary two-way (single batch) pharmacokinetic bioequivalence crossover design if batches are randomly chosen. European regulators have recommended selecting a "typical" in vitro batch to represent each product in pharmacokinetic bioequivalence testing. We explored the feasibility of this approach to control patient risk (the "false equivalence", or Type I, error rate). The probability of achieving a Test/Reference 90% confidence interval within (0.80, 1.25) for a true (non-equivalent) value of 1.25 was simulated for a two-way crossover design using the median in vitro batch across a range of number of in vitro batches, in vitro/in vivo correlation (IVIVC) quality (correlation coefficient, r, of zero to one), and within-subject between-batch pharmacokinetic variability. Even under extremely optimistic conditions, e.g., r=0.95 and >100 batches per product screened in vitro, patient risk for typical between-batch variability levels remained at least threefold higher than the 5% regulatory expectation for the significance level (the false equivalence error rate) of the pharmacokinetic bioequivalence test. This elevated error rate in bioequivalence decision-making occurs because of incomplete confidence that the true product average has been identified, and, importantly, omission of this uncertainty from the bioequivalence confidence interval.


Assuntos
Equivalência Terapêutica , Área Sob a Curva , Estudos Cross-Over , Humanos , Farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA