Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Pharm ; 13(10): 3526-3540, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27557472

RESUMO

Lipidic formulations (LFs) are increasingly utilized for the delivery of drugs that belong to class II of the Biopharmaceutics Classification System (BCS). The current work proposes, for the first time, the combination of in vitro lipolysis and microsomal metabolism studies for the quantitative prediction of human oral bioavailability of BCS II drugs administered in LFs. Marinol and Neoral were selected as model LFs, and their observed oral bioavailabilities (Fobserved) were obtained from published clinical studies in humans. Two separate lipolysis buffers, differing in the level of surfactant concentrations, were used for digestion of the LFs. The predicted fraction absorbed (Fabs) was calculated by measuring the drug concentration in the micellar phase after completion of the lipolysis process. To determine first-pass metabolism (Fg·Fh), drug depletion studies with human microsomes were performed. Clearance values were determined by applying the "in vitro half-life" approach. The estimated Fabs and Fg·Fh values were combined for the calculation of the predicted oral bioavailability (Fpredicted). Results showed that there was a strong correlation between Fobserved and Fpredicted values only when Fabs was calculated using a buffer with surfactant concentrations closer to physiological conditions. The general accuracy of the predicted values suggests that the novel in vitro lipolysis/metabolism approach could quantitatively predict the oral bioavailability of lipophilic drugs administered in LFs.


Assuntos
Lipídeos/química , Lipólise/fisiologia , Microssomos/metabolismo , Administração Oral , Disponibilidade Biológica , Ciclosporina/química , Dronabinol/química , Dronabinol/metabolismo , Composição de Medicamentos/métodos , Humanos , Micelas
2.
Mol Pharm ; 13(10): 3417-3426, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27533712

RESUMO

Precipitation of poorly water-soluble drugs from lipid-based drug delivery systems (LbDDS) has been studied extensively during in vitro lipolysis but has never been shown in vivo. The aim of this study was therefore to investigate if drug precipitation can occur from LbDDS during transit of the gastrointestinal tract in vivo. Rats were administered 300 µL of either of two LbDDS (LbDDS I and LbDDS II) loaded with danazol or fenofibrate (or paracetamol to assess gastric emptying). The rats were euthanized at various time points after administration of both LbDDS containing either drug, and the contents of the stomach and proximal part of the small intestine were harvested. The contents were analyzed for crystalline drug by X-ray powder diffraction and polarized light microscopy. No drug precipitation was evident in the stomach or the intestine after administration of LbDDS I containing danazol at the tested time points. Fenofibrate precipitation was absent in the stomach initially after administration of LbDDS I, but was evident in the stomach 90 min after dosing. No crystalline fenofibrate was observed in the intestine. Danazol and fenofibrate precipitation was evident in the stomach following administration of LbDDS II containing either drug, but not in the intestine at the tested time point. Drug precipitation from LbDDS was observed in the stomach, but not in the intestine, which is contrary to what in vitro lipolysis data (obtained under human GI conditions) suggests. Thus, precipitation of drugs from LbDDS in vivo in rats is much lower than might be anticipated from in vitro lipolysis data.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Esvaziamento Gástrico/efeitos dos fármacos , Lipídeos/química , Acetaminofen/farmacocinética , Animais , Danazol/farmacocinética , Fenofibrato/farmacocinética , Esvaziamento Gástrico/fisiologia , Lipólise/efeitos dos fármacos , Masculino , Microscopia de Polarização , Ratos , Ratos Sprague-Dawley , Solubilidade , Difração de Raios X
3.
Mol Pharm ; 12(7): 2229-36, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25984595

RESUMO

The oral bioavailability of hydrophobic compound is usually limited by the poor aqueous solubility in the gastrointestinal (GI) tract. Various oral formulations were developed to enhance the systemic concentration of such molecules. Moreover, compounds with high melting temperature that appear as insoluble crystals imposed a great challenge to the development of oral vehicle. Polymethoxyflavone, an emerging category of bioactive compounds with potent therapeutic efficacies, were characterized as having a hydrophobic and highly crystalline chemical structure. To enhance the oral dosing efficiency of polymethoxyflavone, a viscoelastic emulsion system with a high static viscosity was developed and optimized using tangeretin, one of the most abundant polymethoxyflavones found in natural sources, as a modeling compound. In the present study, different in vitro and in vivo models were used to mechanistically evaluate the effect of emulsification on oral bioavailability of tangeretin. In vitro lipolysis revealed that emulsified tangeretin was digested and became bioaccessible much faster than unprocessed tangeretin oil suspension. By simulating the entire human GI tract, TNO's gastrointestinal model (TIM-1) is a valuable tool to mechanistically study the effect of emulsification on the digestion events that lead to a better oral bioavailability of tangeretin. TIM-1 result indicated that tangeretin was absorbed in the upper GI tract. Thus, a higher oral bioavailability can be expected if the compound becomes bioaccessible in the intestinal lumen soon after dosing. In vivo pharmacokinetics analysis on mice again confirmed that the oral bioavailability of tangeretin increased 2.3 fold when incorporated in the viscoelastic emulsion than unformulated oil suspension. By using the combination of in vitro and in vivo models introduced in this work, the mechanism that underlie the effect of viscoelastic emulsion on the oral bioavailability of tangeretin was well-elucidated.


Assuntos
Emulsões/química , Flavonas/química , Flavonas/farmacocinética , Substâncias Viscoelásticas/química , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Cristalização/métodos , Digestão/fisiologia , Portadores de Fármacos/química , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Absorção Intestinal/fisiologia , Lipólise/efeitos dos fármacos , Camundongos , Solubilidade/efeitos dos fármacos
4.
Mol Pharm ; 12(4): 1062-71, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25679417

RESUMO

Selection of excipients for drug formulations requires both intellectual and experimental considerations as many of the used excipients are affected by physiological factors, e.g., they may be digested by pancreatic enzymes in the gastrointestinal tract. In the present paper we have looked systematically into the differences between Kolliphor ELP, EL, and RH40 and how they affect the bioavailability of fenofibrate, through pharmacokinetic studies in rats and in vitro lipolysis studies. The study design was made as simple as possible to avoid confounding factors, for which reason the tested formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2-25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0-24h values. For the Kolliphor RH40 formulations, an apparent fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0-24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles. In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better choice for solubilizing fenofibrate in order to increase the absorption upon oral administration. Due to drug dependent effects of the different types of Kolliphor, more studies are recommended in order to understand which type of Kolliphor is best suited for a given drug.


Assuntos
Fenofibrato/administração & dosagem , Polietilenoglicóis/química , Tensoativos/química , Administração Oral , Animais , Área Sob a Curva , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Excipientes , Absorção Intestinal , Lipídeos , Lipólise , Masculino , Micelas , Tamanho da Partícula , Veículos Farmacêuticos , Ratos , Ratos Sprague-Dawley , Solubilidade , Óleo de Soja/química
5.
Eur J Pharm Sci ; 194: 106681, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128839

RESUMO

Understanding the effect of digestion on oral lipid-based drug formulations is a critical step in assessing the impact of the digestive process in the intestine on intraluminal drug concentrations. The classical pH-stat in vitro lipolysis technique has traditionally been applied, however, there is a need to explore the establishment of higher throughput small-scale methods. This study explores the use of alternative lipases with the aim of selecting digestion conditions that permit in-line UV detection for the determination of real-time drug concentrations. A range of immobilised and pre-dissolved lipases were assessed for digestion of lipid-based formulations and compared to digestion with the classical source of lipase, porcine pancreatin. Palatase® 20000 L, a purified liquid lipase, displayed comparable digestion kinetics to porcine pancreatin and drug concentration determined during digestion of a fenofibrate lipid-based formulation were similar between methods. In-line UV analysis using the MicroDISS ProfilerTM demonstrated that drug concentration could be monitored during one hour of dispersion and three hours of digestion for both a medium- and long-chain lipid-based formulations with corresponding results to that obtained from the classical lipolysis method. This method offers opportunities exploring the real-time dynamic drug concentration during dispersion and digestion of lipid-based formulations in a small-scale setup avoiding artifacts as a result of extensive sample preparation.


Assuntos
Lipídeos , Lipólise , Animais , Suínos , Pancreatina , Lipase , Digestão , Solubilidade
6.
Food Res Int ; 187: 114421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763671

RESUMO

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Assuntos
Ácidos e Sais Biliares , Digestão , Emulsões , Lipólise , Fosfolipídeos , Triglicerídeos , Emulsões/química , Triglicerídeos/metabolismo , Triglicerídeos/química , Ácidos e Sais Biliares/metabolismo , Humanos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Digestão/fisiologia , Lipase/metabolismo , Intestino Delgado/metabolismo , Tensoativos/química
7.
Int J Pharm ; 663: 124437, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39002818

RESUMO

A variety of enabling formulations has been developed to address poor oral drug absorption caused by insufficient dissolution in the gastrointestinal tract. As the in vivo performance of these formulations is a result of a complex interplay between dissolution, digestion and permeation, development of suitable in vitro assays that captures these phenomena are called for. The enabling-absorption (ENA) device, consisting of a donor and receiver chamber separated by a semipermeable membrane, has successfully been used to study the performance of lipid-based formulations. In this work, the ENA device was prepared with two different setups (a Caco-2 cell monolayer and an artificial lipid membrane) to study the performance of a lipid-based formulation (LBF), an amorphous solid dispersion (ASD) and the potential benefit of combining the two formulation strategies. An in vivo pharmacokinetic study in rats was performed to evaluate the in vitro-in vivo correlation. In the ENA, high drug concentrations in the donor chamber did not translate to a high mass transfer, which was particularly evident for the ASD as compared to the LBF. The solubility of the polymer used in the ASD was strongly affected by pH-shifts in vitro, and the ph_dependence resulted in poor in vivo performance of the formulation. The dissolution was however increased in vitro when the ASD was combined with a blank lipid-based formulation. This beneficial effect was also observed in vivo, where the drug exposure of the ASD increased significantly when the ASD was co-administered with the blank LBF. To conclude, the in vitro model managed to capture solubility limitations and strategies to overcome these for one of the formulations studied. The correlation between the in vivo exposure of the drug exposure and AUC in the ENA was good for the non pH-sensitive formulations. The deconvoluted pharmacokinetic data indicated that the receiver chamber was a better predictor for the in vivo performance of the drug, however both chambers provided valuable insights to the observed outcome in vivo. This shows that the advanced in vitro setting used herein successfully could explain absorption differences of highly complex formulations.


Assuntos
Lipídeos , Solubilidade , Células CACO-2 , Animais , Humanos , Masculino , Lipídeos/química , Ratos , Composição de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Administração Oral , Absorção Intestinal , Ratos Sprague-Dawley , Polímeros/química , Membranas Artificiais
8.
Curr Drug Deliv ; 20(9): 1241-1261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35598245

RESUMO

Nanotechnology has attracted researchers around the globe owing to the small size and targeting properties of the drug delivery vectors. The interest in self-nanoemulsifying drug delivery systems (SNEDDS) has shown an exponential increase from the formulator's point of view. SNEDDS have shown wide applicability in terms of controlled and targeted delivery of various types of drugs. They chemically consist of oil, surfactants and co-surfactants that decrease the emulsion particle size to the range of <100 nm. However, stability issues such as drug precipitation during storage, incompatibility of ingredients in shell, decrease their application for the long run and these issues have been highlighted in this paper. The current review throws limelight on the biological aspects and process parameters. In addition, the process of absorption from GI is also discussed in detail. SNEDDS have been utilized as a treatment option for various diseases like cancer, diabetes, and ocular and pulmonary diseases. Along with this, the authors highlight the advances involving in vivo and in vitro lipolysis studies on SNEDDS, also highlighting recent innovations in this field, such as novel combinations of drug-free solid SNEDDS + solid dispersions, lipid-modified chitosan containing mucoadhesive SNEDDS, pHsensitive SNEDDS and several others.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Tensoativos/química , Emulsões/química , Nanotecnologia , Tamanho da Partícula , Nanopartículas/química , Solubilidade , Disponibilidade Biológica , Administração Oral
9.
J Control Release ; 349: 206-212, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787914

RESUMO

Two widely applied enabling drug delivery approaches, self-nanoemulsifying drug delivery systems (SNEDDS) and amorphous solid dispersions (ASD), were combined, with the aim of enhancing physical stability, solubilization and absorption of the model drug ritonavir. Ritonavir was loaded at a concentration above its saturation solubility (Seq) in the SNEDDS (superSNEDDS, 250% of Seq). An ASD of ritonavir with polyvinylpyrrolidone-vinyl acetate copolymers (Kollidon® VA64) was prepared by ball milling. Relevant control formulations, which include conventional SNEDDS (90% of Seq), superSNEDDS with a physical mix of Kollidon® VA64 and ritonavir (superSNEDDS+PM) and an aqueous suspension of ritonavir were used. A pharmacokinetic (PK) study in rats was performed to assess the relative bioavailability of ritonavir after oral administration. This was followed by evaluating the formulations in a novel two-step in vitro lipolysis model simulating rat gastric and intestinal conditions. The addition of a ritonavir containing ASD to superSNEDDS increased the degree of supersaturation from 250% to 275% Seq in the superSNEDDS and the physical stability (absence of drug recrystallization) of the system from 48 h to 1 month under ambient conditions. The PK study in rats displayed significantly higher Cmax and AUC0-7h (3-fold increase) and faster Tmax for superSNEDDS+ASD compared to the conventional SNEDDS whilst containing 3 times less lipid than the latter. Furthermore, superSNEDDS+ASD were able to keep the drug solubilised during in vitro lipolysis to the same degree as the conventional SNEDDS. These findings suggest that dissolving an ASD in a superSNEDDS can contribute to the development of novel oral delivery systems with increased bioavailability for poorly water-soluble drugs.


Assuntos
Nanopartículas , Povidona , Administração Oral , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões/química , Lipídeos/química , Nanopartículas/química , Tamanho da Partícula , Ratos , Ritonavir , Solubilidade , Água/química
10.
Eur J Pharm Sci ; 174: 106159, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35263632

RESUMO

This study aimed to develop and optimize a self-nanoemulsifying drug delivery system (SNEDDS) of bosentan (BOS) to solve its poor oral bioavailability due to low water solubility. A pseudo-ternary phase diagram was created based on the solubility and emulsification studies. The major components of the formulation were selected as glyceryl monolinoleate (lipid), polyoxyl 40 hydrogenated castor oil (surfactant), and caprylocaproyl polyoxyl-8 glycerides (co-surfactant). The composition of BOS-SNEDDS was optimized using the Box-Behnken design (BBD) and then was characterized for various physicochemical properties. The in vitro dissolution, in vitro lipolysis, and ex-vivo permeability studies were performed and compared to SNEDDS and reference tablets. The fasted and fed state bioavailability of BOS-loaded SNEDDS was evaluated in Wistar rats (n = 6) compared to the reference. The prepared SNEDDS were thermodynamically stable with a droplet size of 17.11 nm, a polydispersity index of 0.180, and an emulsification time of <1 min. The BOS-loaded SNEDDS showed 3.0, 7.97, 4.23, and 4.94-fold increases in the percentages of cumulative dissolution compared to reference tablets in FaSSIF, FeSSIF, FaSSIF-V2, and FeSSIF-V2, respectively. The permeation study showed that the SNEDDS increased the drug permeation by 3.36, 19.2, 16.4, and 16.6-fold in FaSSIF, FeSSIF, FaSSIF-V2, and FeSSIF-V2, respectively. The enhancement of in vitro dissolution, in vitro lipolysis, and ex-vivo permeability was found significant (p < 0.05). SNEDDS was increased the Cmax and AUC 1.67 and 2.12-fold and 5.15 and 1.84-fold in fasted and fed state compared to the reference, respectively. The in vitro-in vivo relationship has been successfully performed for SNEDDS. These results indicated that the SNEDDS formulation could be a promising delivery system that enhances the absorption and oral bioavailability of BOS.


Assuntos
Nanopartículas , Hipertensão Arterial Pulmonar , Administração Oral , Animais , Disponibilidade Biológica , Bosentana , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Nanopartículas/química , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Tensoativos/química , Comprimidos
11.
Int J Pharm ; 623: 121958, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35760262

RESUMO

Drug overdose connected to marketed pharmaceutical products, particularly opioids, occurs at an alarming rate. Novel strategies through innovative formulation approaches that reduce the likelihood of overdose while allowing safe therapeutic outcomes are urgently required. The current study provides a proof-of-concept for a new formulation approach by co-formulating drug with a lipase inhibitor within a solid lipid formulation in order to prevent or reduce the harmful effects of taking multiple doses of an oral solid dose form. Lipase inhibitor controlled-release (LICR) formulations were created using a simple hot melt method to co-formulate the inhibitor (orlistat) and ibuprofen, as the model drug, within the lipid matrix. The digestion and drug release kinetics were determined using an in vitro lipolysis model. Above a threshold level of orlistat there was decreased digestibility of multiple doses of the LICR formulations, leading to reduced drug release. Upon administration of the formulations in capsules to rats, the LICR formulation displayed the lowest exposure of ibuprofen during the pharmacokinetic studies. This novel formulation approach shows promise in preventing accidental drug overdose after oral administration of multiple doses of formulation.


Assuntos
Overdose de Drogas , Lipídeos , Administração Oral , Animais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ibuprofeno , Lipase/metabolismo , Lipólise , Orlistate , Ratos , Solubilidade
12.
Int J Nanomedicine ; 16: 905-924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603359

RESUMO

PURPOSE: The purpose of this proposed research was to investigate a nano-formulation developed using self-nanoemulsifying drug delivery system (SNEDDS) to improve the pharmacodynamic potential of rosuvastatin by assisting its transportation through lymphatic circulation. METHODS: The utilized lipids, surfactants, and co-surfactants for SNEDDS were selected on the basis of solubility studies. The SNEDDS formulation was optimized by implementing a D-optimal mixture design, wherein the effect of concentration of Capmul MCM EP (X1), Tween 20 (X2) and Transcutol P (X3) as independent variables was studied on droplet size (Y1), % cumulative drug release (Y2) and self-emulsification time (Y3) as dependent variables. The optimized formulation was evaluated via in vitro parameters and in vivo pharmacodynamic potential in Wistar rats. RESULTS: The D-optimal mixture design and subsequent ANOVA application resulted in the assortment of the optimized SNEDDS formulation that exhibited a droplet size of nano range (14.91nm), in vitro drug release of >90% within 30 minutes, and self-emulsification time of 16 seconds. The in vivo pharmacodynamic study carried out using Wistar rats confirmed the better antihyperlipidemic potential of developed formulation in normalizing the lipidic level of serum in contrast to pure drug and marketed tablets. CONCLUSION: This research reports the application of D-optimal mixture design for successful and systematic development of rosuvastatin-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance in comparison to marketed formulation. Eventually, improved anti-hyperlipidemic efficacy was envisaged which might be attributed to increased drug solubility and absorption. Overall, this study shows the utility of SNEDDS for improving the dissolution rate and bioavailability of poor aqueous-soluble drugs. The present SNEDDS formulation could be a promising approach and alternative to conventional dosage form.


Assuntos
Sistemas de Liberação de Medicamentos , Emulsões/química , Nanopartículas/química , Rosuvastatina Cálcica/farmacologia , Análise de Variância , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Lipídeos/química , Masculino , Nanopartículas/ultraestrutura , Tamanho da Partícula , Transição de Fase , Ratos Wistar , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Tensoativos/química , Comprimidos , Viscosidade
13.
Int J Pharm ; 596: 120258, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486034

RESUMO

The prediction of the in vivo performance of self-nanoemulsifying drug delivery systems (SNEDDSs) is currently gaining increasing attention. Therefore, the need for reliable in vitro models able to assess the drug solubilization capacity of such formulations upon in vitro lipolysis, as well as to concomitantly evaluate in vitro drug permeation, has become ever so evident. In the current study, the high-throughput in vitro intestinal lipolysis model was combined with the mucus-PVPA in vitro permeation model to study the solubilization capacity of SNEDDSs for the poorly water-soluble drug fenofibrate and to study the consequent drug permeation. Moreover, drug solubilization and permeation were evaluated both in the presence and absence of lipolysis. The results obtained demonstrated that the presence of in vitro lipolysis significantly impacted the solubilization and permeation profiles of fenofibrate compared to its absence. The results were in accordance with already published in vivo data regarding the same fenofibrate-loaded SNEDDSs. Additionally, the correlation between the in vitro permeation data and in vivo plasma concentration in rats was found to be excellent both in the presence and absence of lipolysis (R2 > 0.98), highlighting the ability of the developed combined in vitro model to predict in vivo drug absorption.


Assuntos
Lipólise , Preparações Farmacêuticas , Administração Oral , Animais , Absorção Intestinal , Lipídeos , Muco , Ratos , Solubilidade , Água
14.
Heliyon ; 7(4): e06717, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898835

RESUMO

Lipid-based drug delivery systems are widely used for enhancing the bioavailability of poorly water-soluble drugs. However, following oral intake, lipid excipients often undergo gastrointestinal lipolysis, which drastically affects drugs solubility and bioavailability. That's why developing new lipid excipients which are resistant to digestion would be of great interest. We studied here the potential role of the unconventional Chinese star anise whole seedpod oil (CSAO) as an alternative multifunctional lipid excipient. Pancreatic lipase-mediated digestion of the extracted crude oil emulsion was assessed in vitro. Pancreatic lipase, being a strict sn-1,3-regioselective lipase, showed a high (16-fold) olive oil to CSAO activity ratio, which could be attributed to fatty acids composition and triglycerides intramolecular structure. For the sake of comparison, the non-regioselective lipase Novozyme® 435 exhibited higher activity than pancreatic lipase on CSAO emulsion, perhaps due to its ability to release fatty acids from the internal sn-2 position of TAGs. Apart counteracting lipolysis, CSAO oil also showed additional biopharmaceutical benefits including moderate antioxidant and antihypertensive activities. Altogether, these findings highlight for the first time the potential use of star anise unconventional whole seedpod oil as a multifunctional lipid excipient for the development of new lipid formulations.

15.
Drug Deliv ; 27(1): 756-771, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32397771

RESUMO

During the last decades, much attention has been focused on SNEDDS approach to resolve concerns of BCS II class drugs with accentuation on upgrading the solubility and bioavailability. The present hypothesis confirms the theory that SNEDDS can reduce the impact of food on Candesartan solubilization, thereby offering the potential for improved oral delivery without co-administration with meals. The present studies describe quality-by-design-based development and characterization of Candesartan loaded SNEDDS for improving its pharmacodynamic potential. D-optimal mixture design was used for systematic optimization of SNEDDS, which showed globule size of 13.91 nm, more rapid drug release rate of >90% in 30 min and 16 s for self-emulsification. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated up to 1.99- and 1.10-fold enhancement in dissolution rate from SNEDDS over pure drug and marketed tablet. In vivo pharmacodynamic investigation also showed superior antihypertensive potential of SNEDDS in normalizing serum lipid levels as compared to pure drug and marketed tablet that was executed on male Wistar rats. Overall, this paper reports successful systematic development of candesartan-loaded SNEDDS with distinctly improved biopharmaceutical performance. This research work interpreted a major role of SNEDDS for enhancing the rate of dissolution and bioavailability of poorly water soluble drugs.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Benzimidazóis/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Tetrazóis/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Benzimidazóis/química , Benzimidazóis/farmacologia , Disponibilidade Biológica , Compostos de Bifenilo , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões , Excipientes/química , Interações Alimento-Droga , Masculino , Ratos Wistar , Solubilidade , Tetrazóis/química , Tetrazóis/farmacologia
16.
J Control Release ; 317: 375-384, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31765705

RESUMO

Using lipid-based drug delivery systems (LbDDS) is an efficient strategy to enhance the low oral bioavailability of poorly water-soluble drugs. Here the oral absorption of fenofibrate (FF) from LbDDS in rats was investigated in pharmacokinetic, in vitro lipolysis, and SPECT/CT in vivo imaging studies. The investigated formulations were soybean oil solution (SBO), a mixture of soybean oil and monoacyl phosphatidylcholine (MAPC) (SBO-MAPC), self-nanoemulsifying drug delivery systems with and without MAPC (SNEDDS-MAPC and SNEDDS, respectively), and an aqueous suspension (SUSP) as a reference. Oral bioavailability of the LbDDS ranged from 27 to 35%. A two-step in vitro lipolysis model simulating rat gastro-intestinal digestion provided in vitro FF solubilisation data to understand oral absorption. During the in vitro lipolysis, most FF was undissolved for SUSP and distributed into the poorly dispersed oil phase for SBO. For the SNEDDS without MAPC, practically all FF solubilised into the aqueous phase during the dispersion and digestion. Adding MAPC to SBO enhanced the dispersion of the oil phase into the digestion media while adding MAPC to SNEDDS resulted in a distribution of 29% of FF into the oil phase at the beginning of in vitro lipolysis. FF distribution into both oil and aqueous phases explained the higher and prolonged oral absorption of LbDDS containing MAPC. To elucidate the relatively low bioavailability of all formulations, FF and triolein were labeled with 123I and 125I, respectively, to study the biodistribution of drug and lipid excipients in a dual isotope SPECT/CT in vivo imaging study. The concentration of radiolabeled drug as a function of time in the heart correlated to the plasma curves. A significant amount of radiolabeled drug and lipids (i.e., 28-59% and 24-60% of radiolabeled drug and lipids, respectively) was observed in the stomach at 24 h post administration, which can be linked to the low bioavailability of the formulations. The current study for the first time combined in vitro lipolysis and dual isotope in vivo imaging to find the root cause of different fenofibrate absorption profiles from LbDDS and an aqueous suspension.


Assuntos
Fenofibrato , Administração Oral , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Lipólise , Ratos , Solubilidade , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
17.
Pharmaceutics ; 12(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517255

RESUMO

The use of amorphous drug delivery systems is an attractive approach to improve the bioavailability of low molecular weight drug candidates that suffer from poor aqueous solubility. However, the pharmaceutical performance of many neat amorphous drugs is compromised by their tendency for recrystallization during storage and lumping upon dissolution, which may be improved by the application of coatings on amorphous surfaces. In this study, hot melt coating (HMC) as a solvent-free coating method was utilized to coat amorphous carvedilol (CRV) particles with tripalmitin containing 10% (w/w) and 20% (w/w) of polysorbate 65 (PS65) in a fluid bed coater. Lipid coated amorphous particles were assessed in terms of their physical stability during storage and their drug release during dynamic in vitro lipolysis. The release of CRV during in vitro lipolysis was shown to be mainly dependent on the PS65 concentration in the coating layer, with a PS65 concentration of 20% (w/w) resulting in an immediate release profile. The physical stability of the amorphous CRV core, however, was negatively affected by the lipid coating, resulting in the recrystallization of CRV at the interface between the crystalline lipid layer and the amorphous drug core. Our study demonstrated the feasibility of lipid spray coating of amorphous CRV as a strategy to modify the drug release from amorphous systems but at the same time highlights the importance of surface-mediated processes for the physical stability of the amorphous form.

18.
Curr Drug Deliv ; 16(8): 688-697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250755

RESUMO

In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/química , Preparações Farmacêuticas/metabolismo , Coloides/química , Portadores de Fármacos/química , Humanos , Lipólise , Estrutura Molecular , Preparações Farmacêuticas/química
19.
Int J Nanomedicine ; 14: 5623-5636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440045

RESUMO

PURPOSE: The objective of this study was to compare the in vitro Fick's first law, in vitro lipolysis, and in vivo rat assays for oral absorption of Biopharmaceutical Classification Systems Class II (BCS II) drugs in self-nanoemulsifying drug delivery system (SNEDDS), and studied drugs and oils properties effects on the absorption. METHODS: The transport abilities of griseofulvin (GRI), phenytoin (PHE), indomethacin (IND), and ketoprofen (KET) in saturated water solutions and SNEDDS were investigated using the in vitro Madin-Darby canine kidney cell model. GRI and cinnarizine (CIN) in medium-chain triglycerides (MCT)-SNEDDS and long-chain triglycerides (LCT)-SNEDDS were administered in the in vivo SD rat and in vitro lipolysis models to compare the oral absorption and the distribution behaviors in GIT and build an in vitro-in vivo correlation (IVIVC). RESULTS: In the cell model, the solubility of GRI, PHE, IND, and KET increased 6-8 fold by SNEDDS, but their permeability were only 18%, 4%, 8%, and 33% of those of their saturated water solutions, respectively. However, in vivo absorption of GRI-SNEDDS was twice that of the GRI suspension and those of CIN-SNEDDS were 15-21 fold those of the CIN suspension. In the lipolysis model, the GRI% in aqueous and pellet phases of MCT were similar to that in LCT. In contrast, the CIN% in the aqueous and pellet phases were decreased but that of the lipid phase increased. In addition, an IVIVC was found between the CIN% in the lipid phase and in vivo relative oral bioavailability (F r). CONCLUSION: The in vitro cell model was still a suitable tool to study drug properties effects on biofilm transport and SNEDDS absorption mechanisms. The in vitro lipolysis model provided superior oral absorption simulation of SNEDDS and helped to build correlation with in vivo rats. The oral drug absorption was affected by drug and oil properties in SNEDDS.


Assuntos
Absorção Fisiológica , Sistemas de Liberação de Medicamentos , Emulsões/química , Lipólise , Modelos Biológicos , Nanopartículas/química , Administração Oral , Animais , Permeabilidade da Membrana Celular , Cinarizina/administração & dosagem , Cinarizina/química , Cinarizina/farmacologia , Cães , Griseofulvina/administração & dosagem , Griseofulvina/farmacologia , Células Madin Darby de Rim Canino , Masculino , Preparações Farmacêuticas , Ratos Sprague-Dawley , Solubilidade
20.
Acta Pharm Sin B ; 9(1): 194-201, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30766791

RESUMO

This study assessed the influence of the composition of drug-free SNEDDS co-dosed with aqueous suspensions of carvedilol (CAR), cinnarizine (CIN) or R3040 on drug solubilization in a two-compartment in vitro lipolysis model. Correlation of drug logP or solubility in SNEDDS with drug solubilization during in vitro lipolysis in the presence of drug-free SNEDDS was assessed. SNEDDS with varying ratios of soybean oil:Maisine 35-1 (1:1, w/w) and Kolliphor RH40, with ethanol at 10% (w/w) were used. SNEDDS were named F65, F55 and F20 (numbers refer to the percentage of lipids) and aqueous suspensions without drug-free SNEDDS (F0) were also analyzed. While the ranking order of drug solubilization was F65=F55=F20>F0 for CAR; F65=F55>F20>F0 for CIN and F65=F55=F20>F0 for R3040 - with higher CAR solubilization than for R3040 and CIN - the ranking of S eq of CAR, CIN and R3040 in SNEDDS was F65F20 and F65>F55>F20, respectively. Therefore, the composition of SNEDDS influenced the solubilization of CIN, but not CAR and R3040. Furthermore, high S eq in SNEDDS did not reflect high drug solubilization. As CAR (logP 3.8) showed higher solubilization than CIN (logP 5.8) and R3040 (logP 10.4), a correlation between drug logP and drug solubilization was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA