Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298466

RESUMO

Skin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.


Assuntos
Artrite Psoriásica , Psoríase , Animais , Artrite Psoriásica/metabolismo , Proteômica , Psoríase/metabolismo , Metabolômica , Biomarcadores/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298530

RESUMO

The ongoing COVID-19 pandemic highlights the urgent need for effective antiviral agents and vaccines. Drug repositioning, which involves modifying existing drugs, offers a promising approach for expediting the development of novel therapeutics. In this study, we developed a new drug, MDB-MDB-601a-NM, by modifying the existing drug nafamostat (NM) with the incorporation of glycyrrhizic acid (GA). We assessed the pharmacokinetic profiles of MDB-601a-NM and nafamostat in Sprague-Dawley rats, revealing rapid clearance of nafamostat and sustained drug concentration of MDB-601a-NM after subcutaneous administration. Single-dose toxicity studies showed potential toxicity and persistent swelling at the injection site with high-dose administration of MDB-601a-NM. Furthermore, we evaluated the efficacy of MDB-601a-NM in protecting against SARS-CoV-2 infection using the K18 hACE-2 transgenic mouse model. Mice treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM exhibited improved protectivity in terms of weight loss and survival rates compared to the nafamostat-treated group. Histopathological analysis revealed dose-dependent improvements in histopathological changes and enhanced inhibitory efficacy in MDB-601a-NM-treated groups. Notably, no viral replication was detected in the brain tissue when mice were treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM. Our developed MDB-601a-NM, a modified Nafamostat with glycyrrhizic acid, shows improved protectivity against SARS-CoV-2 infection. Its sustained drug concentration after subcutaneous administration and dose-dependent improvements makes it a promising therapeutic option.


Assuntos
COVID-19 , SARS-CoV-2 , Ratos , Humanos , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Pandemias , Modelos Animais de Doenças , Ratos Sprague-Dawley
3.
Anal Bioanal Chem ; 413(6): 1765-1776, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511457

RESUMO

Chlorine is a toxic industrial chemical with a history of use as a chemical weapon. Chlorine is also produced, stored, and transported in bulk making it a high-priority pulmonary threat in the USA. Due to the high reactivity of chlorine, few biomarkers exist to identify exposure in clinical and environmental samples. Our laboratory evaluates acute chlorine exposure in clinical samples by measuring 3-chlorotyrosine (Cl-Tyr) and 3,5-dichlorotyrosine (Cl2-Tyr) using liquid chromatography tandem mass spectrometry (LC-MS/MS). Individuals can have elevated biomarker levels due to their environment and chronic health conditions, but levels are significantly lower in individuals exposed to chlorine. Historically these biomarkers have been evaluated in serum, plasma, blood, and bronchoalveolar lavage (BAL) fluid. We report the expansion into hair and lung tissue samples using our newly developed tissue homogenization protocol which fits seamlessly with our current chlorinated tyrosine quantitative assay. Furthermore, we have updated the chlorinated tyrosine assay to improve throughput and ruggedness and reduce sample volume requirements. The improved assay was used to measure chlorinated tyrosine levels in 198 mice exposed to either chlorine gas or air. From this animal study, we compared Cl-Tyr and Cl2-Tyr levels among three matrices (i.e., lung, hair, and blood) and found that hair had the most abundant chlorine exposure biomarkers. Furthermore, we captured the first timeline of each analyte in the lung, hair, and blood samples. In mice exposed to chlorine gas, both Cl-Tyr and Cl2-Tyr were present in blood and lung samples up to 24 h and up to 30 days in hair samples.


Assuntos
Cloro/química , Cabelo/metabolismo , Exposição por Inalação , Tirosina/análogos & derivados , Tirosina/análise , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Calibragem , Cromatografia , Modelos Animais de Doenças , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasma/química , Controle de Qualidade , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
4.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331959

RESUMO

The soil-dwelling, saprophytic actinomycete Rhodococcus equi is a facultative intracellular pathogen of macrophages and causes severe bronchopneumonia when inhaled by susceptible foals. Standard treatment for R. equi disease is dual-antimicrobial therapy with a macrolide and rifampin. Thoracic ultrasonography and early treatment with antimicrobials prior to the development of clinical signs are used as means of controlling endemic R. equi infection on many farms. Concurrently with the increased use of macrolides and rifampin for chemoprophylaxis and the treatment of subclinically affected foals, a significant increase in the incidence of macrolide- and rifampin-resistant R. equi isolates has been documented. Previously, our laboratory demonstrated decreased fitness of R. equi strains that were resistant to macrolides, rifampin, or both, resulting in impaired in vitro growth in iron-restricted media and in soil. The objective of this study was to examine the effect of macrolide and/or rifampin resistance on intracellular replication of R. equi in equine pulmonary macrophages and in an in vivo mouse infection model in the presence and absence of antibiotics. In equine macrophages, the macrolide-resistant strain did not increase in bacterial numbers over time and the dual macrolide- and rifampin-resistant strain exhibited decreased proliferation compared to the susceptible isolate. In the mouse model, in the absence of antibiotics, the susceptible R. equi isolate outcompeted the macrolide- or rifampin-resistant strains.


Assuntos
Infecções por Actinomycetales/tratamento farmacológico , Antibacterianos/farmacologia , Claritromicina/farmacologia , Macrófagos Alveolares/microbiologia , Rhodococcus equi/efeitos dos fármacos , Rifampina/farmacologia , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/microbiologia , Animais , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana , Aptidão Genética/efeitos dos fármacos , Aptidão Genética/fisiologia , Cavalos , Fígado/efeitos dos fármacos , Fígado/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Testes de Sensibilidade Microbiana , Cultura Primária de Células , Rhodococcus equi/fisiologia , Baço/efeitos dos fármacos , Baço/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-30670419

RESUMO

WCK 5222 is a combination of cefepime and the high-affinity PBP2-binding ß-lactam enhancer zidebactam. The cefepime-zidebactam combination is active against multidrug-resistant Gram-negative bacteria, including carbapenemase-expressing Acinetobacter baumannii The mechanism of action of the combination involves concurrent multiple penicillin binding protein inhibition, leading to the enhanced bactericidal action of cefepime. The aim of the present study was to assess the impact of the zidebactam-mediated enhanced in vitro bactericidal action in modulating the percentage of the time that the free drug concentration remains above the MIC (percent fT>MIC) for cefepime required for the in vivo killing of A. baumannii Cefepime and cefepime-zidebactam MICs were comparable and ranged from 2 to 16 mg/liter for the A. baumannii strains (n = 5) employed in the study. Time-kill studies revealed the improved killing of these strains by the cefepime-zidebactam combination compared to that by the constituents alone. Employing a neutropenic mouse lung infection model, exposure-response analyses for all the A. baumannii strains showed that the cefepime fT>MIC required for 1-log10 kill was 38.9%. In the presence of a noneffective dose of zidebactam, the cefepime fT>MIC requirement dropped significantly to 15.5%, but it still rendered a 1-log10 kill effect. Thus, zidebactam mediated the improvement in cefepime's bactericidal effect observed in time-kill studies, manifested in vivo through the lowering of cefepime's pharmacodynamic requirement. This is a first-ever study demonstrating a ß-lactam enhancer role of zidebactam that helps augment the in vivo activity of cefepime by reducing the magnitude of its pharmacodynamically relevant exposures against A. baumannii.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cefepima/farmacologia , Cefalosporinas/farmacologia , Ciclo-Octanos/farmacologia , Piperidinas/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacocinética , Compostos Azabicíclicos/farmacocinética , Proteínas de Bactérias/biossíntese , Cefepima/farmacocinética , Cefalosporinas/farmacocinética , Ciclo-Octanos/farmacocinética , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Testes de Sensibilidade Microbiana , Piperidinas/farmacocinética , Infecções Respiratórias/microbiologia , beta-Lactamases/biossíntese
6.
Chemotherapy ; 63(1): 13-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29130946

RESUMO

Previous clinical studies have showed the clinical benefits of the initiation of treatment with a daptomycin (DAP) loading dose, but only a few studies have evaluated its antimicrobial benefits. We evaluated the efficacy of a DAP loading dose against methicillin-resistant Staphylococcus aureus (MRSA) infections in a neutropenic murine thigh infection model. Three MRSA isolates (DAP MIC: 0.5, 1, and 2 mg/L) were tested. Four DAP regimens simulating human concentration-time profiles, i.e., (i) day 1: 8 mg/kg and day 2: 6 mg/kg, (ii) days 1 and 2: 6 mg/kg/day, (iii) day 1: 8 mg/kg and day 2: 4 mg/kg, and (iv) days 1 and 2: 4 mg/kg/day, were administered to the mice. Efficacy was calculated as the change in bacterial density. DAP loading-dose regimen iii showed greater antimicrobial activity against MRSA with MIC 1 mg/L than nonloading regimen iv (-3.10 ± 0.63 vs. -0.71 ± 0.34 log10 CFU; p < 0.01). Loading-dose regimen iii achieved greater log10 CFU changes than nonloading regimen ii, while the total DAP dose for 2 days was the same (-3.10 ± 0.63 vs. -1.46 ± 0.48 log10 CFU; p < 0.05). DAP loading-dose regimen iii showed enhanced antimicrobial activity against MRSA with DAP MIC 0.5 mg/L when compared with nonloading regimen iv. However, loading-dose regimens i and iii did not reduce bacterial density for MRSA with DAP MIC 2 mg/L. Our data suggest that a DAP loading-dose regimen would be an advantageous procedure for patients infected with MRSA with DAP MIC ≤1 mg/L.


Assuntos
Antibacterianos/uso terapêutico , Daptomicina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Daptomicina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Coxa da Perna/microbiologia , Coxa da Perna/patologia
7.
Eur J Neurosci ; 46(5): 2096-2107, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28700113

RESUMO

We have recently demonstrated that endothelin (ET) is functionally coupled to Nax , a Na+ concentration-sensitive Na+ channel for lactate release via ET receptor type B (ETB R) and is involved in peripheral nerve regeneration in a sciatic nerve transection-regeneration mouse model. Nax is known to interact directly with Na+ /K+ -ATPase, leading to lactate production in the brain. To investigate the role of Na+ /K+ -ATPase in peripheral nerve regeneration, in this study, we applied ouabain, a Na+ /K+ -ATPase inhibitor, to the cut site for 4 weeks with an osmotic pump. While functional recovery and nerve reinnervation to the toe started at 5 weeks after axotomy and were completed by 7 weeks, ouabain delayed them by 2 weeks. The delay by ouabain was improved by lactate, and its effect was blocked by α-cyano-4-hydroxy-cinnamic acid (CIN), a broad monocarboxylate transporter (MCT) inhibitor. In primary cultures of dorsal root ganglia, neurite outgrowth of neurons and lactate release into the culture medium was inhibited by ouabain. Conversely, lactate enhanced the neurite outgrowth, which was blocked by CIN, but not by AR-C155858, a MCT1/2-selective inhibitor. ET-1 and ET-3 increased neurite outgrowth of neurons, which was attenuated by an ETB R antagonist, ouabain and 2 protein kinase C inhibitors. Taken together with the finding that ETB R was expressed in Schwann cells, these results demonstrate that ET enhanced neurite outgrowth of neurons mediated by Na+ /K+ -ATPase via ETB R in Schwann cells. This study suggests that Na+ /K+ -ATPase coupled to the ET-ETB R system plays a critical role in peripheral nerve regeneration via lactate signalling.


Assuntos
Ácido Láctico/metabolismo , Regeneração Nervosa/fisiologia , Receptor de Endotelina B/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células Cultivadas , Antagonistas do Receptor de Endotelina B/farmacologia , Endotelina-1/metabolismo , Endotelina-3/metabolismo , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Masculino , Camundongos Endogâmicos C57BL/metabolismo , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fator de Crescimento Neural/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
8.
J Magn Reson Imaging ; 41(2): 347-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24590550

RESUMO

PURPOSE: To explore the sensitivity of high-field small animal magnetic resonance imaging to dynamic changes in fat content in the liver and to characterize the effect of prandial state on imaging studies of hepatic fat. MATERIALS AND METHODS: A total of three timepoints were acquired using asymmetric spin-echo acquisitions for 12 mice with 24-hour spacing. After the first scan, half of the cohort was placed on a water-only diet. The second half of the cohort continued to have access to their high-fat chow. The scans were repeated after 24 hours. All animals were then returned to the high-fat diet, and the scans were again repeated after 24 hours. Fat fraction maps were computed using previously described methods. Regions of interests were manually drawn in the livers and the patterns of the two groups over time were compared. RESULTS: Five out of six of the animals in the starved group showed an increase in hepatic fat fraction during the fasting period (average increase 0.54 ± 0.48), which decreased on refeeding. Analysis of variance indicated that the results significantly depended on both the group and the timepoint (P = 0.003). CONCLUSION: Fat-water imaging methods are able to measure hepatic fat changes caused by short-term dietary perturbations.


Assuntos
Jejum , Fígado Gorduroso/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Artefatos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Emerg Microbes Infect ; 13(1): 2322649, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38431850

RESUMO

Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.


Assuntos
Anfotericina B , Antifúngicos , Candidíase , Animais , Camundongos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida auris , Lansoprazol/farmacologia , Respiração , Citocromos
10.
J Nucl Med ; 64(6): 978-985, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581375

RESUMO

PET is a powerful molecular imaging technique that can provide functional information on living objects. However, the spatial resolution of PET imaging has been limited to around 1 mm, which makes it difficult to visualize mouse brain function in detail. Here, we report an ultrahigh-resolution small-animal PET scanner we developed that can provide a resolution approaching 0.6 mm to visualize mouse brain function with unprecedented detail. Methods: The ultrahigh-resolution small-animal PET scanner has an inner diameter of 52.5 mm and axial coverage of 51.5 mm. The scanner consists of 4 rings, each of which has 16 depth-of-interaction detectors. Each depth-of-interaction detector consists of a 3-layer staggered lutetium yttrium orthosilicate crystal array with a pitch of 1 mm and a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in accordance with the National Electrical Manufacturers Association NU4 protocol. Spatial resolution was evaluated with phantoms of various resolutions. In vivo glucose metabolism imaging of the mouse brain was performed. Results: Peak absolute sensitivity was 2.84% with an energy window of 400-600 keV. The 0.55-mm rod structure of a resolution phantom was resolved using an iterative algorithm. In vivo mouse brain imaging with 18F-FDG clearly identified the cortex, thalamus, and hypothalamus, which were barely distinguishable in a commercial preclinical PET scanner that we used for comparison. Conclusion: The ultrahigh-resolution small-animal PET scanner is a promising molecular imaging tool for neuroscience research using rodent models.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Camundongos , Animais , Imagens de Fantasmas , Neuroimagem , Desenho de Equipamento
11.
Front Immunol ; 14: 1098461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936979

RESUMO

The SARS-CoV-2 coronavirus, which causes a respiratory disease called COVID-19, has been declared a pandemic by the World Health Organization (WHO) and is still ongoing. Vaccination is the most important strategy to end the pandemic. Several vaccines have been approved, as evidenced by the ongoing global pandemic, but the pandemic is far from over and no fully effective vaccine is yet available. One of the most critical steps in vaccine development is the selection of appropriate antigens and their proper introduction into the immune system. Therefore, in this study, we developed and evaluated two proposed vaccines composed of single and multiple SARS-CoV-2 polypeptides derived from the spike protein, namely, vaccine A and vaccine B, respectively. The polypeptides were validated by the sera of COVID-19-vaccinated individuals and/or naturally infected COVID-19 patients to shortlist the starting pool of antigens followed by in vivo vaccination to hACE2 transgenic mice. The spike multiple polypeptide vaccine (vaccine B) was more potent to reduce the pathogenesis of organs, resulting in higher protection against the SARS-CoV-2 infection.


Assuntos
COVID-19 , Viroses , Animais , Camundongos , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Modelos Animais de Doenças , Camundongos Transgênicos , Peptídeos
12.
Antiviral Res ; 214: 105607, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088168

RESUMO

Zika virus (ZIKV) infection is associated with the birth defect microcephaly and Guillain-Barré syndrome in adults. There is no approved vaccine or specific antiviral agent against ZIKV. ZFD-10, a novel structural skeleton of 1H-pyridazino[4,5-b]indol-4(5H)-one, was firstly synthesized and discovered to be a potent anti-ZIKV inhibitor with very low cytotoxicity. ZFD-10's anti-ZIKV potency is independent of cell lines and ZFD-10 mainly targets the post-entry stages of ZIKV life cycle. Time-of-addition and time-of-withdrawal assays showed that 10 µM ZFD-10 displayed the ability to decrease mainly at the RNA level and weakly the viral progeny particle load. Furthermore, ZFD-10 could protect ZIKV NS5 from thermal unfolding and aggregation and increase the Tagg value of ZIKV NS5 protein from 44.6 to 49.3 °C, while ZFD-10 dose-dependently inhibits ZIKV NS5 RdRp activity using in vitro RNA polymerase assays. Molecular docking study suggests that ZFD-10 affects RdRp enzymatic function through interfering with the fingers and thumb subdomains. These results supported that ZFD-10's cell-based anti-ZIKV activity is related to its anti-RdRp activity of ZIKV NS5. The in vivo anti-ZIKV study shows that the middle-dose (4.77 mg/kg/d) of ZFD-10 protected mice from ZIKV infection and the viral loads of the blood, liver, kidney and brain in the middle-dose and high-dose (9.54 mg/kg/d) were significantly reduced compared to those of the ZIKV control. These results confirm that ZFD-10 has a certain antiviral effect against ZIKV infection in vivo.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Infecção por Zika virus/tratamento farmacológico , Simulação de Acoplamento Molecular , Ligação Proteica , Antivirais/farmacologia , Antivirais/metabolismo , Proteínas não Estruturais Virais/genética
13.
Front Oncol ; 13: 1231104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746297

RESUMO

Introduction: Cutaneous squamous cell carcinoma of the head and neck (cSCCHN) can metastasize by invading nerves and spread toward the central nervous system. This metastatic process is called perineural invasion (PNI) and spread (PNS). An in vivo sciatic nerve mouse model is used for cSCCHN PNI/PNS. Here we describe a complementary whisker pad model which allows for molecular studies investigating drivers of PNI/PNS in the head and neck environment. Methods: A431 cells were injected into the whisker pads of BALB/c Foxn1nu and NSG-A2 mice. Tumor progression was monitored by bioluminescence imaging and primary tumor resection was performed. PNI was detected by H&E and IHC. Tumor growth and PNI were assessed with inducible ablation of LOXL2. Results: The rate of PNI development in mice was 10%-28.6%. Tumors exhibited PNI/PNS reminiscent of the morphology seen in the human disease. Our model's utility was demonstrated with inducible ablation of LOXL2 reducing primary tumor growth and PNI. Discussion: This model consists in a feasible way to test molecular characteristics and potential therapies, offers to close a gap in the described in vivo methods for PNI/PNS of cSCCHN and has uses in concert with the established sciatic nerve model.

14.
G3 (Bethesda) ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35485945

RESUMO

The genetic regulation of gene expression varies greatly across tissue-type and individuals and can be strongly influenced by the environment. Many variants, under healthy control conditions, may be silent or even have the opposite effect under diseased stress conditions. This study uses an in vivo mouse model to investigate how the effect of genetic variation changes with cellular stress across different tissues. Endoplasmic reticulum stress occurs when misfolded proteins accumulate in the endoplasmic reticulum. This triggers the unfolded protein response, a large transcriptional response which attempts to restore homeostasis. This transcriptional response, despite being a conserved, basic cellular process, is highly variable across different genetic backgrounds, making it an ideal system to study the dynamic effects of genetic variation. In this study, we sought to better understand how genetic variation alters expression across tissues, in the presence and absence of endoplasmic reticulum stress. The use of different mouse strains and their F1s allow us to also identify context-specific cis- and trans- regulatory variation underlying variable transcriptional responses. We found hundreds of genes that respond to endoplasmic reticulum stress in a tissue- and/or genotype-dependent manner. The majority of the regulatory effects we identified were acting in cis-, which in turn, contribute to the variable endoplasmic reticulum stress- and tissue-specific transcriptional response. This study demonstrates the need for incorporating environmental stressors across multiple different tissues in future studies to better elucidate the effect of any particular genetic factor in basic biological pathways, like the endoplasmic reticulum stress response.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Variação Genética , Camundongos , Resposta a Proteínas não Dobradas/genética
15.
Drug Deliv ; 28(1): 285-292, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33501867

RESUMO

In relieving local pains, lidocaine, one of ester-type local anesthetics, has been used. To develop the lidocaine membranes of enhanced local anesthetic effects, we have designed to establish the composition of wound dressings based on lidocaine chloride (LCH) (anesthetic drug)-loaded chitosan (CS)/polymyxin B sulfate (PMB). The LCH membranes (LCH-CS/PMB) was fabricated by the LCH oxide solutions within the CS/PMB matrix. The influences of different experimental limitations on CS/PMB membrane formations were examined. The double membrane particle sizes were evaluated by scanning electron microscopy (HR-SEM). Additionally, antibacterial efficacy was developed for gram-positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 16 days. In contrast to the untreated wounds, rapid healing was perceived in the LCH-CS/PMB-treated wound with less damaging. These findings indicate that LCH-CS/PMB-based bandaging materials could be a potential innovative biomaterial for tissue repair and regeneration for wound healing applications in an animal model.


Assuntos
Anestésicos Locais/farmacologia , Antibacterianos/farmacologia , Quitosana , Regeneração Tecidual Guiada , Lidocaína/farmacologia , Nanopartículas , Polimixina B/farmacologia , Cicatrização/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Bandagens , Materiais Biocompatíveis , Técnicas In Vitro , Lidocaína/administração & dosagem , Testes Mecânicos , Camundongos , Polimixina B/administração & dosagem , Alicerces Teciduais
16.
Drug Deliv ; 28(1): 390-399, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33594917

RESUMO

This study was designed to establish the composition of wound bandages based on Cerium nanoparticle (CeNP)-loaded polyvinyl alcohol (PVA) nanogels. The CeNP nanogel (Ce-nGel) was fabricated by the fructose-mediated reduction of Cerium oxide solutions within the PVA matrix. The influences of different experimental limitations on PVA nanogel formations were examined. The nanogel particle sizes were evaluated by transmission electron microscopy and determined to range from ∼10 to 50 nm. Additionally, glycerol was added to the Ce-nGels, and the resulting compositions (Ce-nGel-Glu) were coated on cotton fabrics to generate the wound bandaging composite. The cumulative drug release profile of the Cerium from the bandage was found to be ∼38% of the total loading after two days. Additionally, antibacterial efficacy was developed for Gam positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 24 days. In contrast to the untreated wounds, rapid healing was perceived in the Ce-nGel-Glu-treated wound with less damage. These findings indicate that Ce-nGel-Glu-based bandaging materials could be a potential candidate for wound healing applications in the future.


Assuntos
Antibacterianos/química , Cério/química , Nanogéis/química , Nanopartículas/química , Álcool de Polivinil/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bandagens , Quitosana/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula
17.
Methods Protoc ; 4(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33526760

RESUMO

Patients with epithelial metaplasias have an increased risk of developing malignancies. In Barrett's esophagus, neo-columnar epithelium develops proximal to the squamous-columnar junction (SCJ) in the esophagus as the result of prolonged exposure to bile and acid reflux. Patients require lifetime periodic surveillance, due to lack of effective eradication therapies. The shortage of innovative treatment options is mostly attributable to the paucity of adequate in vivo models of neo-columnar epithelium regeneration. This protocol describes the generation of a cryoablation model to study regeneration of neo-epithelia at the SCJ. Cryoablation of the columnar and squamous mucosa at the SCJ was achieved through local application of liquid N2O in wild-type and reporter mice in combination with acid suppression. Acid suppression alone, showed restoration of the SCJ with normal histological features of both the neo-columnar and neo-squamous epithelium within 14 days. As a proof of principle, mice were treated with mNoggin, an inhibitor of bone morphogenetic proteins (BMPs), which are involved in the development of columnar epithelia. Local application of mNoggin to the ablated area at the SCJ significantly reduced the development of the neo-columnar mucosa. Although this model does not faithfully recapitulate the exact characteristics of Barrett's esophagus, it is a well-suited tool to study the mechanisms of therapeutic inhibition of neo-columnar regeneration. It therefore represents an efficient and easy platform to test novel pharmacological therapies for treatment of neo-epithelial lesions at the SCJ.

18.
Gut Microbes ; 12(1): 1847976, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33258388

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory condition linked to intestinal microbial dysbiosis, including the expansion of E. coli strains related to extra-intestinal pathogenic E. coli. These "pathobionts" exhibit pathogenic properties, but their potential to promote UC is unclear due to the lack of relevant animal models. Here, we established a mouse model using a representative UC pathobiont strain (p19A), and mice lacking single immunoglobulin and toll-interleukin 1 receptor domain (SIGIRR), a deficiency increasing susceptibility to gut infections. Strain p19A was found to adhere to the cecal mucosa of Sigirr -/- mice, causing modest inflammation. Moreover, it dramatically worsened dextran sodium sulfate-induced colitis. This potentiation was attenuated using a p19A strain lacking α-hemolysin genes, or when we targeted pathobiont adherence using a p19A strain lacking the adhesin FimH, or following treatment with FimH antagonists. Thus, UC pathobionts adhere to the intestinal mucosa, and worsen the course of colitis in susceptible hosts.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Escherichia coli/crescimento & desenvolvimento , Microbioma Gastrointestinal , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Animais , Colite Ulcerativa/imunologia , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Predisposição Genética para Doença , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia
19.
J Biomed Opt ; 25(6): 1-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912689

RESUMO

Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (ϕ) effects, which impact the photochemical oxygen consumption rate, are not accounted for. In this preclinical study, reacted reactive oxygen species ([ROS]rx) was investigated as a dosimetric quantity for PDT outcome. The ability of [ROS]rx to predict the cure index (CI) of tumor growth, CI = 1 - k / kctr, where k and kctr are the growth rate of tumor under PDT study and the control tumor without PDT, respectively, for benzoporphyrin derivative (BPD)-mediated PDT, was examined. Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (Φ = 22.5 to 166.7 J / cm2) and in-air fluence rates (ϕair = 75 to 250 mW / cm2) with a BPD dose of 1 mg / kg and a drug-light interval (DLI) of 15 min. Treatment was delivered with a collimated laser beam of 1-cm-diameter at 690 nm. Explicit measurements of in-air light fluence rate, tissue oxygen concentration, and BPD concentration were used to calculate for [ROS]rx. Light fluence rate at 3-mm depth (ϕ3 mm), determined based on Monte-Carlo simulations, was used in the calculation of [ROS]rx at the base of tumor. CI was used as an endpoint for three dose metrics: light fluence, PDT dose, and [ROS]rx. PDT dose was defined as the product of the time-integral of photosensitizer concentration and ϕ3 mm. Preliminary studies show that [ROS]rx best correlates with CI and is an effective dosimetric quantity that can predict treatment outcome. The threshold dose for [ROS]rx for vascular BPD-mediated PDT using DLI of 15 min is determined to be 0.26 mM and is about 3.8 times smaller than the corresponding value for conventional BPD-mediated PDT using DLI of 3 h.


Assuntos
Fibrossarcoma , Fotoquimioterapia , Animais , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C3H , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Oxigênio Singlete
20.
Neurophotonics ; 7(1): 015002, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32016131

RESUMO

We used a new multimodal imaging system that combines optical coherence microscopy and brightfield microscopy. Using this in vivo brain monitoring approach and cranial window implantation, we three-dimensionally visualized the vascular network during thrombosis, with high temporal (18 s) and spatial (axial, 2.5 µ m ; lateral, 2.2 µ m ) resolution. We used a modified mouse model of photochemical thromboembolic stroke in order to more accurately parallel human stroke. Specifically, we applied green laser illumination to focally occlude a branch of the middle cerebral artery. Despite the recanalization of the superficial arteries at 24 h after stroke, no blood flow was detected in the small vessels within deeper regions. Moreover, after 24 h of stroke progression, scattering signal enhancement was observed within the stroke region. We also evaluated the infarct extent and shape histologically. In summary, we present a novel approach for real-time mouse brain monitoring and ischemic variability analysis. This multimodal imaging method permits the analysis of thrombosis progression and reperfusion. Additionally and importantly, the system could be used to study the effect of poststroke drug treatments on blood flow in small arteries and capillaries of the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA