Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Niger J Clin Pract ; 21(5): 614-623, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29735863

RESUMO

OBJECTIVE: The aim of this study was to evaluate in vitro shear bond strength (SBS) and in vivo bond survival rates of brackets bonded using orthodontic indirect bonding resins. MATERIALS AND METHODS: For the in vitro study, the first group was direct bonding control group. In Groups II and III, bonding was performed with indirect bonding resins that were either chemically or light-cured. The SBS of each sample was examined. For the in vivo study, full-mouth brackets were placed in 20 patients using a split-mouth approach, with either chemically-cured or a light-cured indirect bonding resin. The patients were followed for 12 months. Data were statistically evaluated using analysis of variance, Tukey's tests, and Weibull survival analysis. RESULTS: The mean SBS values (MPa) were 17.6 ± 6.6, 13.1 ± 4.7, and 15.1 ± 5.9 for Group I, Groups II, and III, respectively, (P < 0.05). The adhesive remnant index scores of the groups were generally Score 3 and Score 4. In vivo follow-up showed no statistically significant differences in total bond failure rate between groups (P > 0.05). CONCLUSIONS: In vitro study showed lower SBS with chemically-cured indirect bonding resin than flowable light-cured resin and the control group, but in vivo failure rates of both indirect resins were found to be adequate for clinical usage.


Assuntos
Colagem Dentária/métodos , Braquetes Ortodônticos , Cimentos de Resina/química , Resistência ao Cisalhamento , Resinas Compostas , Análise do Estresse Dentário , Humanos , Teste de Materiais , Estudos Prospectivos , Propriedades de Superfície
2.
Front Microbiol ; 15: 1302883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410395

RESUMO

The prevalence of bacterial persisters is related to their phenotypic diversity and is responsible for the relapse of chronic infections. Tolerance to antibiotic therapy is the hallmark of bacterial persistence. In this study, we have screened a transposon library of Mycobacterium smegmatis mc2155 strain using antibiotic tolerance, survival in mouse macrophages, and biofilm-forming ability of the mutants. Out of 10 thousand clones screened, we selected ten mutants defective in all the three phenotypes. Six mutants showed significantly lower persister abundance under different stress conditions. Insertions in three genes belonging to the pathways of oxidative phosphorylation msmeg_3233 (cydA), biotin metabolism msmeg_3194 (bioB), and oxidative metabolism msmeg_0719, a flavoprotein monooxygenase, significantly reduced the number of live cells, suggesting their role in pathways promoting long-term survival. Another group that displayed a moderate reduction in CFU included a glycosyltransferase, msmeg_0392, a hydrogenase subunit, msmeg_2263 (hybC), and a DNA binding protein, msmeg_2211. The study has revealed potential candidates likely to facilitate the long-term survival of M. smegmatis. The findings offer new targets to develop antibiotics against persisters. Further, investigating the corresponding genes in M. tuberculosis may provide valuable leads in improving the treatment of chronic and persistent tuberculosis infections.

3.
Microbes Infect ; 26(1-2): 105215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37689346

RESUMO

Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_2875, annotated as malate:quinone oxidoreductase (mqo), is thought to have a role in TCA cycle in converting malate to oxaloacetate. To study its physiological relevance, we developed mqo knockout (KO) in Mtb-Ra. A KO complemented (KOC) strain was also developed by complementing the KO with mqo over-expressing construct. Under normal in vitro conditions, KO does not show any growth defect but showed reduced CFU burden in macrophages and in mice lungs. In vitro studies with KO showed reduced fitness under oxidative and low pH stress, and also increased susceptibility to levofloxacin and D-cycloserine. Transcript analysis of mqo showed increased expression levels under oxidative and low pH stress. This is the first study to show physiological relevance of mqo encoded by MRA_2875 in Mtb-Ra under oxidative and low pH stress. In summary, the present study shows that MRA_2875 encoded malate:quinone oxidoreductase is a functional enzyme which contributes to oxidative stress and low pH tolerance, and survival in macrophages and in mice.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Mycobacterium tuberculosis/genética , Malatos/metabolismo , Oxirredutases , Quinonas
4.
Front Cell Infect Microbiol ; 12: 1062682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619746

RESUMO

Introduction: Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined. Methods: We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen. Results: Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice. Discussion: The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.


Assuntos
Burkholderia pseudomallei , Genes Essenciais , Melioidose , Animais , Humanos , Camundongos , Burkholderia pseudomallei/genética , Caenorhabditis elegans/microbiologia , Mutagênese
5.
Front Microbiol ; 13: 1055512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504765

RESUMO

Pseudomonas aeruginosa, like other pathogens, adapts to the limiting nutritional environment of the host by altering patterns of gene expression and utilizing alternative pathways required for survival. Understanding the genes essential for survival in the host gives insight into pathways that this organism requires during infection and has the potential to identify better ways to treat infections. Here, we used a saturated transposon insertion mutant pool of P. aeruginosa strain PAO1 and transposon insertion sequencing (Tn-Seq), to identify genes conditionally important for survival under conditions mimicking the environment of a nosocomial infection. Conditions tested included tissue culture medium with and without human serum, a murine abscess model, and a human skin organoid model. Genes known to be upregulated during infections, as well as those involved in nucleotide metabolism, and cobalamin (vitamin B12) biosynthesis, etc., were required for survival in vivo- and in host mimicking conditions, but not in nutrient rich lab medium, Mueller Hinton broth (MHB). Correspondingly, mutants in genes encoding proteins of nucleotide and cobalamin metabolism pathways were shown to have growth defects under physiologically-relevant media conditions, in vivo, and in vivo-like models, and were downregulated in expression under these conditions, when compared to MHB. This study provides evidence for the relevance of studying P. aeruginosa fitness in physiologically-relevant host mimicking conditions and identified metabolic pathways that represent potential novel targets for alternative therapies.

6.
Microbes Infect ; 24(8): 105000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36354071

RESUMO

Branched-chain amino acids (BCAAs) leucine, isoleucine and valine biosynthetic pathways have been reported from plants, fungi and bacteria including Mycobacterium tuberculosis (Mtb) but are absent in animals. This makes interventions with BCAAs biosynthesis an attractive proposition for antimycobacterial drug discovery. In the present study, Mycobacterium tuberculosis H37Ra (Mtb-Ra) ketol-acid reductoisomerase encoding ORF MRA_3031 was studied to establish its role in Mtb-Ra growth and survival. Recombinant knockdown (KD) and complemented (KDC) strains along with wild-type (WT) Mtb-Ra were studied under in-vitro and ex-vivo conditions. KD was defective for survival inside macrophages and showed time dependent decrease in its colony forming unit (CFU) counts, while, WT and KDC showed time dependent increase in CFUs, after macrophage infection. Also, KD showed reduced ability to form persister cells, had altered membrane permeability against ethidium bromide and nile red dyes, and had reduced biofilm maturation, compared to WT and KDC. The in-vivo studies showed that KD infected mice had lower CFU counts in lungs, compared to WT. In summary Mtb shows survival deficit in macrophages and in mice after ketol-acid reductoisomerase down-regulation.


Assuntos
Mycobacterium tuberculosis , Camundongos , Animais , Mycobacterium tuberculosis/metabolismo , Cetol-Ácido Redutoisomerase/metabolismo , Regulação para Baixo , Macrófagos/microbiologia , Biofilmes
7.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323519

RESUMO

Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes "hypervirulent" clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen-the first target organs after intestinal translocation-may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to brain and placenta.


Assuntos
Encéfalo/microbiologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Placenta/microbiologia , Animais , Translocação Bacteriana , Feminino , Genótipo , Humanos , Listeria monocytogenes/classificação , Listeria monocytogenes/fisiologia , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Gravidez , Virulência
8.
Front Microbiol ; 9: 1118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896180

RESUMO

A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA