RESUMO
The use of natural cartilage extracellular matrix (ECM) has gained widespread attention in the field of cartilage tissue engineering. However, current approaches for delivering functional scaffolds for osteoarthritis (OA) therapy rely on knee surgery, which is limited by the narrow and complex structure of the articular cavity and carries the risk of injuring surrounding tissues. This work introduces a novel cell microcarrier, magnetized cartilage ECM-derived scaffolds (M-CEDSs), which are derived from decellularized natural porcine cartilage ECM. Human bone marrow mesenchymal stem cells are selected for their therapeutic potential in OA treatments. Owing to their natural composition, M-CEDSs have a biomechanical environment similar to that of human cartilage and can efficiently load functional cells while maintaining high mobility. The cells are released spontaneously at a target location for at least 20 days. Furthermore, cell-seeded M-CEDSs show better knee joint function recovery than control groups 3 weeks after surgery in preclinical experiments, and ex vivo experiments reveal that M-CEDSs can rapidly aggregate inside tissue samples. This work demonstrates the use of decellularized microrobots for cell delivery and their in vivo therapeutic effects in preclinical tests.
Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Animais , Suínos , Humanos , Cartilagem Articular/fisiologia , Engenharia Tecidual , Matriz Extracelular/química , Fenômenos Magnéticos , Alicerces Teciduais/químicaRESUMO
The design and synthesis of new promising compounds based on thienopyrimidine scaffold containing 2-aminothiophene fragments with good safety and favorable drug-like properties are highly relevant for chemotherapy. In this study, a series of 14 variants of thieno[3,2-e]pyrrolo[1,2-a]pyrimidine derivatives (11aa-oa) and their precursors (31 compounds) containing 2-aminothiophenes fragments (9aa-mb, 10aa-oa) were synthesized and screened for their cytotoxicity against B16-F10 melanoma cells. The selectivity of the developed compounds was assessed by determining the cytotoxicity using normal mouse embryonic fibroblasts (MEF NF2 cells). The lead compounds 9cb, 10ic and 11jc with the most significant antitumor activity and minimum cytotoxicity on normal non-cancerous cells were chosen for further in vivo experiments. Additional in vitro experiments with compounds 9cb, 10ic and 11jc showed that apoptosis was the predominant mechanism of death in B16-F10 melanoma cells. With support from in vivo studies, compounds 9cb, 10ic and 11jc demonstrated the biosafety to healthy mice and significant inhibition of the metastatic nodules in pulmonary metastatic melanoma mouse model. Histological analysis detected no abnormal changes in the main organs (the liver, spleen, kidneys, and heart) after the therapy. Thus, the developed compounds 9cb, 10ic and 11jc demonstrate high efficiency in the treatment of pulmonary metastatic melanoma and can be recommended for further preclinical investigation of the melanoma treatment.
Assuntos
Antineoplásicos , Melanoma Experimental , Animais , Camundongos , Fibroblastos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Pulmão , Pirimidinas/farmacologia , Pirimidinas/uso terapêuticoRESUMO
Chronic wounding as a result of recurrent skin blistering in the painful genetic skin disease epidermolysis bullosa, may lead to life-threatening infections, increased risk of tumor formation, and other serious medical complications. Therefore, epidermolysis bullosa patients have an urgent need for optimal wound care and tissue regeneration. Therapeutic strategies using gene-, protein-, and cell-therapies are being developed to improve clinical symptoms, and some of them have already been investigated in early clinical trials. The most favorable options of functional therapies include gene replacement, gene editing, RNA targeting, and harnessing natural gene therapy. This review describes the current progress of the different approaches targeting autologous skin cells, and will discuss the benefits and challenges of their application.