Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490195

RESUMO

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Indóis/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico
2.
Immunity ; 57(8): 1939-1954.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39013465

RESUMO

Antibiotic use in early life disrupts microbial colonization and increases the risk of developing allergies and asthma. We report that mice given antibiotics in early life (EL-Abx), but not in adulthood, were more susceptible to house dust mite (HDM)-induced allergic airway inflammation. This susceptibility was maintained even after normalization of the gut microbiome. EL-Abx decreased systemic levels of indole-3-propionic acid (IPA), which induced long-term changes to cellular stress, metabolism, and mitochondrial respiration in the lung epithelium. IPA reduced mitochondrial respiration and superoxide production and altered chemokine and cytokine production. Consequently, early-life IPA supplementation protected EL-Abx mice against exacerbated HDM-induced allergic airway inflammation in adulthood. These results reveal a mechanism through which EL-Abx can predispose the lung to allergic airway inflammation and highlight a possible preventative approach to mitigate the detrimental consequences of EL-Abx.


Assuntos
Antibacterianos , Asma , Disbiose , Microbioma Gastrointestinal , Indóis , Pyroglyphidae , Animais , Camundongos , Disbiose/imunologia , Indóis/farmacologia , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Asma/imunologia , Pyroglyphidae/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Feminino , Inflamação/imunologia , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Citocinas/metabolismo , Hipersensibilidade/imunologia , Propionatos
3.
Mol Cell Biochem ; 479(7): 1767-1786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38485805

RESUMO

Indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan, has been proven to fulfill an essential function in cardiovascular disease (CVD) and nerve regeneration disease. However, the role of IPA in aortic dissection (AD) has not been revealed. We aimed to investigate the role of IPA in the pathogenesis of AD and the underlying mechanisms of IPA in endothelial dysfunction. Untargeted metabolomics has been employed to screen the plasma metabolic profile of AD patients in comparison with healthy individuals. Network pharmacology provides insights into the potential molecular mechanisms underlying IPA. 3-aminopropionitrile fumarate (BAPN) and angiotensin II (Ang II) were administered to induce AD in mice, while human umbilical vein endothelial cells (HUVECs) were employed for in vitro validation of the signaling pathways predicted by network pharmacology. A total of 224 potentially differential plasma metabolites were identified in the AD patients, with 110 up-regulated metabolites and 114 down-regulated metabolites. IPA was the most significantly decreased metabolite involved in tryptophan metabolism. Bcl2, caspase3, and AKT1 were predicted as the target genes of IPA by network pharmacology and molecular docking. IPA suppressed Ang II-induced apoptosis, intracellular ROS generation, inflammation, and endothelial tight junction (TJ) loss. Animal experiments demonstrated that administration of IPA alleviated the occurrence and severity of AD in mice. Taken together, we identified a previously unexplored association between tryptophan metabolite IPA and AD, providing a novel perspective on the underlying mechanism through which IPA mitigates endothelial dysfunction to protect against AD.


Assuntos
Angiotensina II , Dissecção Aórtica , Células Endoteliais da Veia Umbilical Humana , Indóis , Metabolômica , Humanos , Animais , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/tratamento farmacológico , Camundongos , Angiotensina II/metabolismo , Masculino , Indóis/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Feminino , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542360

RESUMO

Different gut microbiota-derived metabolites influence cardiovascular function, and, among all, the role of indole-3-propionic acid (IPA), from tryptophan metabolism, shows controversial effects. The aim of this study was to evaluate its role in endothelial dysfunction. IPA effects were studied on bovine aortic endothelial cells (BAE-1). First, IPA cytotoxicity was evaluated by an MTS assay. Then, the levels of intracellular reactive oxygen species (ROS) were evaluated by a microplate reader or fluorescence microscopy with the CellROX® Green probe, and nitric oxide (NO) production was studied by fluorescence microscopy with the DAR4M-AM probe after acute or chronic treatment. Finally, immunoblotting analysis for endothelial nitric oxide synthase (eNOS) phosphorylation (p-eNOS) was performed. In BAE-1, IPA was not cytotoxic, except for the highest concentration (5 mM) after 48 h of treatment, and it showed neither oxidant nor antioxidant activity. However, the physiological concentration of IPA (1 µM) significantly reduced NO released by adenosine triphosphate (ATP)-stimulated BAE-1. These last data were confirmed by Western blot analysis, where IPA induced a significant reduction in p-eNOS in purinergic-stimulated BAE-1. Given these data, we can speculate that IPA negatively affects the physiological control of vascular tone by impairing the endothelial NO release induced by purinergic stimulation. These results represent a starting point for understanding the mechanisms underlying the relationship between gut microbiota metabolites and cardiometabolic health.


Assuntos
Microbioma Gastrointestinal , Propionatos , Doenças Vasculares , Animais , Bovinos , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Triptofano/metabolismo , Doenças Vasculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Indóis/farmacologia , Indóis/metabolismo
5.
J Stroke Cerebrovasc Dis ; 33(6): 107680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508478

RESUMO

OBJECTIVE: This study aimed to explore the correlation between the serum level of indole-3-propionic acid (IPA) and the progression and prognosis of acute cerebral infarction (ACI). METHODS: This study enrolled 197 patients with ACI, and 53 participants from a community-based stroke screening program during the same period were included as the control group. The patients with ACI were divided into quartiles of serum IPA. A logistic regression model was used for comparison. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive value of the IPA. RESULTS: Compared with the healthy control group, the ACI group had lower serum IPA (P < 0.05). The serum IPA was an independent factor for acute ischemic stroke (OR=0.992, 95% CI: 0.984-0.999, P=0.035). The serum IPA was lower in patients with progressive stroke or poor prognosis than in patients with stable stroke or good prognosis (P < 0.05). Patients with ACI with low serum IPA are prone to progression and poor prognosis. The best cutoff value for predicting progression was 193.62 pg/mL (sensitivity, 67.5%; specificity 83.7%), and that for poor prognosis was 193.77 pg/mL (sensitivity, 71.1%; specificity, 72.5%). CONCLUSION: The serum level of IPA was an independent predictor of ACI and had certain clinical value for predicting stroke progression and prognosis in patients with ACI.


Assuntos
Biomarcadores , Progressão da Doença , Indóis , AVC Isquêmico , Valor Preditivo dos Testes , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prognóstico , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , AVC Isquêmico/mortalidade , AVC Isquêmico/terapia , Fatores de Risco , Biomarcadores/sangue , Estudos de Casos e Controles , Regulação para Baixo , Medição de Risco , Propionatos/sangue
6.
Mol Med ; 29(1): 17, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721094

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common chronic disease characterized by chronic inflammation and extracellular matrix degradation. Indole-3-propionic acid (IPA) is a tryptophan metabolite secreted by intestinal flora, which can exert anti-inflammatory effects in a variety of diseases. In this study, we further investigated the potential therapeutic role of IPA in OA and the underlying mechanism. METHODS: IL-1ß was utilized to induce chondrocyte inflammation. Then, the cytotoxicity of IPA on rat chondrocytes was assessed. Meanwhile, RT-qPCR, Griess reaction, ELISA, Western blot and immunofluorescence were performed to evaluate the expression of inflammatory factors and stromal proteins, and the NF-κB pathway in chondrocytes treated with IL-1ß alone, with IPA or with aryl hydrocarbon receptor (AhR) knockdown. An OA rat model was established by anterior cruciate ligament transection, and hematoxylin-eosin staining, Safranin-O/Fast Green staining and immunochemistry were applied to estimate OA severity. RESULTS: IPA did not affect cellular viability at concentrations up to 80 µM. IPA significantly inhibited the IL-1ß-induced expression of inflammatory factors (Nitric oxide, PGE2, TNF-α, IL-6, iNOS and COX-2) and matrix-degrading enzymes (MMP-3, MMP-13 and ADAMTS-5), upregulated the expression of anabolic markers (aggrecan and collagen-II) and inactivated the NF-κB pathway. However, AhR knockdown could abolish the above protection capabilities and the suppression of the NF-κB pathway induced by IPA. Furthermore, IPA significantly reduced serum inflammatory cytokines expression, cartilage destruction and synovitis in vivo, demonstrating its protective role in OA progression. CONCLUSION: IPA improved IL-1ß-induced chondrocyte inflammation and extracellular matrix degradation through the AhR/NF-κB axis, which provides an innovative therapeutic strategy for OA.


Assuntos
NF-kappa B , Osteoartrite , Animais , Ratos , Condrócitos , Receptores de Hidrocarboneto Arílico/genética , Inflamação , Osteoartrite/tratamento farmacológico
7.
Mol Med ; 29(1): 65, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208586

RESUMO

BACKGROUND: The morbidity and mortality of sepsis are extremely high, which is a major problem plaguing human health. However, current drugs and measures for the prevention and treatment of sepsis have little effect. Sepsis-associated acute liver injury (SALI) is an independent risk factor for sepsis, which seriously affects the prognosis of sepsis. Studies have found that gut microbiota is closely related to SALI, and indole-3-propionic Acid (IPA) can activate Pregnane X receptor (PXR). However, the role of IPA and PXR in SALI has not been reported. METHODS: This study aimed to explore the association between IPA and SALI. The clinical data of SALI patients were collected and IPA level in feces was detected. The sepsis model was established in wild-type mice and PXR knockout mice to investigate the role of IPA and PXR signaling in SALI. RESULTS: We showed that the level of IPA in patients' feces is closely related to SALI, and the level of IPA in feces has a good ability to identify and diagnose SALI. IPA pretreatment significantly attenuated septic injury and SALI in wild-type mice, but not found in knockout PXR gene mice. CONCLUSIONS: IPA alleviates SALI by activating PXR, which reveals a new mechanism of SALI, and provides potentially effective drugs and targets for the prevention of SALI.


Assuntos
Fígado , Sepse , Humanos , Camundongos , Animais , Receptor de Pregnano X/genética , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos Knockout , Sepse/complicações
8.
Br J Nutr ; 130(9): 1521-1536, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36847278

RESUMO

Only 6 to 8 % of the UK adults meet the daily recommendation for dietary fibre. Fava bean processing lead to vast amounts of high-fibre by-products such as hulls. Bean hull fortified bread was formulated to increase and diversify dietary fibre while reducing waste. This study assessed the bean hull: suitability as a source of dietary fibre; the systemic and microbial metabolism of its components and postprandial events following bean hull bread rolls. Nine healthy participants (53·9 ± 16·7 years) were recruited for a randomised controlled crossover study attending two 3 days intervention sessions, involving the consumption of two bread rolls per day (control or bean hull rolls). Blood and faecal samples were collected before and after each session and analysed for systemic and microbial metabolites of bread roll components using targeted LC-MS/MS and GC analysis. Satiety, gut hormones, glucose, insulin and gastric emptying biomarkers were also measured. Two bean hull rolls provided over 85 % of the daily recommendation for dietary fibre; but despite being a rich source of plant metabolites (P = 0·04 v. control bread), these had poor systemic bioavailability. Consumption of bean hull rolls for 3 days significantly increased plasma concentration of indole-3-propionic acid (P = 0·009) and decreased faecal concentration of putrescine (P = 0·035) and deoxycholic acid (P = 0·046). However, it had no effect on postprandial plasma gut hormones, bacterial composition and faecal short chain fatty acids amount. Therefore, bean hulls require further processing to improve their bioactives systemic availability and fibre fermentation.


Assuntos
Fabaceae , Hormônios Gastrointestinais , Adulto , Humanos , Voluntários Saudáveis , Putrescina , Pão/análise , Cromatografia Líquida , Estudos Cross-Over , Espectrometria de Massas em Tandem , Fibras na Dieta/análise , Fabaceae/metabolismo , Ácido Desoxicólico , Glicemia/análise
9.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047602

RESUMO

Butyrate and indole-3-propionic acid represent the CNS-available gut microbiota metabolites exhibiting potentially beneficial effects on human brain function and being tested as antidepressants. Astrocytes represent one of the putative targets for the gut metabolites; however, the mechanism of action of butyrate and indole-3-propionic acid is not well understood. In order to test this mechanism, a human astrocyte cell-line culture was treated with the compounds or without them, and the supernatants were collected for the analysis of ATP and glutamate gliotransmitter release with the use of luminescent and fluorescent methods, respectively. A 10-min incubation of astrocytes with 1-5 mM butyrate increased the ATP gliotransmitter release by 78% (95%CI: 45-119%), p < 0.001. The effect was found to be mediated by the cytosolic Ca2+ mobilization. Both 10-min and 24-h treatments with indole-3-propionic acid produced no significant effects on the release of gliotransmitters. The results for glutamate release were inconclusive due to a specific glutamate release pattern discovered in the tested model. This preliminary report of butyrate-induced ATP gliotransmitter release appears to provide a novel mechanistic explanation for the beneficial effect of this gut microbiota metabolite on brain function; however, the results require further evaluation in more composed models.


Assuntos
Astrócitos , Microbioma Gastrointestinal , Humanos , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203617

RESUMO

Auxin amino acid conjugates are considered to be storage forms of auxins. Previous research has shown that indole-3-acetyl-L-alanine (IAA-Ala), indole-3-propionyl-L-alanine (IPA-Ala) and indole-3-butyryl-L-alanine (IBA-Ala) affect the root growth of Brassica rapa seedlings. To elucidate the potential mechanism of action of the conjugates, we treated B. rapa seedlings with 0.01 mM IAA-, IPA- and IBA-Ala and investigated their effects on the auxin metabolome and transcriptome. IBA-Ala and IPA-Ala caused a significant inhibition of root growth and a decrease in free IAA compared to the control and IAA-Ala treatments. The identification of free auxins IBA and IPA after feeding experiments with IBA-Ala and IPA-Ala, respectively, confirms their hydrolysis in vivo and indicates active auxins responsible for a stronger inhibition of root growth. IBA-Ala caused the induction of most DEGs (807) compared to IPA-Ala (417) and IAA-Ala (371). All treatments caused similar trends in transcription profile changes when compared to control treatments. The majority of auxin-related DEGs were found after IBA-Ala treatment, followed by IPA-Ala and IAA-Ala, which is consistent with the apparent root morphology. In addition to most YUC genes, which showed a tendency to be downregulated, transcripts of auxin-related DEGs that were identified (UGT74E2, GH3.2, SAUR, IAA2, etc.) were more highly expressed after all treatments. Our results are consistent with the hypothesis that the hydrolysis of conjugates and the release of free auxins are responsible for the effects of conjugate treatments. In conclusion, free auxins released by the hydrolysis of all auxin conjugates applied affect gene regulation, auxin homeostasis and ultimately root growth inhibition.


Assuntos
Brassica rapa , Gastrópodes , Animais , Ácidos Indolacéticos/farmacologia , Brassica rapa/genética , Transcriptoma , Indóis , Alanina , Plântula/genética
11.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163143

RESUMO

Actions of symbiotic gut microbiota are in dynamic balance with the host's organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.


Assuntos
Aterosclerose/prevenção & controle , Bactérias/metabolismo , Doenças Cardiovasculares/prevenção & controle , Microbioma Gastrointestinal , Indóis/farmacologia , Estresse Oxidativo , Triptofano/farmacologia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos
12.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R969-R981, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755563

RESUMO

Recent evidence suggests that gut bacteria-derived metabolites interact with the cardiovascular system and alter blood pressure (BP) in mammals. Here, we evaluated the effect of indole-3-propionic acid (IPA), a gut bacteria-derived metabolite of tryptophan, on the circulatory system. Arterial BP, electrocardiographic, and echocardiographic (ECHO) parameters were recorded in male, anesthetized, 12-wk-old Wistar-Kyoto rats at baseline and after intravenous administration of either IPA or vehicle. In additional experiments, rats were pretreated with prazosin or pentolinium to evaluate the involvement of the autonomic nervous system in cardiovascular responses to IPA. IPA's concentrations were measured using ultra-high performance liquid chromatography tandem mass spectrometry. The reactivity of endothelium-intact and -denuded mesenteric resistance arteries was tested. Cells' viability and lactate dehydrogenase (LDH) cytotoxicity assays were performed on cultured cardiomyocytes. IPA increased BP with a concomitant bradycardic response but no significant change in QTc interval. The pretreatment with prazosin and pentolinium reduced the hypertensive response. ECHO showed increased contractility of the heart after the administration of IPA. Ex vivo, IPA constricted predilated and endothelium-denuded mesenteric resistance arteries and increased metabolic activity of cardiomyocytes. IPA increases BP via cardiac and vascular mechanisms in rats. Furthermore, IPA increases cardiac contractility and metabolic activity of cardiomyocytes. Our study suggests that IPA may act as a mediator between gut microbiota and the circulatory system.


Assuntos
Pressão Arterial/efeitos dos fármacos , Bactérias/metabolismo , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal , Hipertensão/induzido quimicamente , Indóis/toxicidade , Artérias Mesentéricas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Bradicardia/induzido quimicamente , Bradicardia/fisiopatologia , Células Cultivadas , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipertensão/fisiopatologia , Indóis/administração & dosagem , Indóis/metabolismo , Infusões Intravenosas , Masculino , Artérias Mesentéricas/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Endogâmicos WKY
13.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830317

RESUMO

Clostridium sporogenes (C. sporogenes), as a potential probiotic, metabolizes tryptophan and produces an anti-inflammatory metabolite, indole-3-propionic acid (IPA). Herein, we studied the effects of C. sporogenes and its bioactive metabolite, IPA, on skeletal muscle development and chronic inflammation in mice. In the in vivo study, the muscle tissues and serum samples of mice with C. sporogenes supplementation were used to analyze the effects of C. sporogenes on muscle metabolism; the IPA content was determined by metabonomics and ELISA. In an in vitro study, C2C12 cells were exposed to lipopolysaccharide (LPS) alone or LPS + IPA to verify the effect of IPA on muscle cell inflammation by transcriptome, and the involved mechanism was revealed by different functional assays. We observed that C. sporogenes colonization significantly increased the body weight and muscle weight gain, as well as the myogenic regulatory factors' (MRFs) expression. In addition, C. sporogenes significantly improved host IPA content and decreased pro-inflammatory cytokine levels in the muscle tissue of mice. Subsequently, we confirmed that IPA promoted C2C12 cells' proliferation by activating MRF signaling. IPA also effectively protected against LPS-induced C2C12 cells inflammation by activating Pregnane X Receptor and restoring the inhibited miR-26a-2-3p expression. miR-26a-2-3p serves as a novel muscle inflammation regulatory factor that could directly bind to the 3'-UTR of IL-1ß, a key initiator factor in inflammation. The results suggested that C. sporogenes with its functional metabolite IPA not only helps muscle growth development, but also protects against inflammation, partly by the IPA/ miR-26a-2-3p /IL-1ß cascade.


Assuntos
Clostridium/metabolismo , Indóis/metabolismo , Interleucina-1beta/genética , MicroRNAs/genética , Células Musculares/efeitos dos fármacos , Receptor de Pregnano X/genética , Propionatos/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Indóis/farmacologia , Inflamação/prevenção & controle , Interleucina-1beta/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Receptor de Pregnano X/metabolismo , Probióticos/metabolismo , Propionatos/farmacologia , Transdução de Sinais , Transcriptoma , Triptofano/metabolismo
14.
Molecules ; 25(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708889

RESUMO

Indole-containing acids-tryptophan metabolites-found in serum and cerebrospinal fluid (CSF) samples of patients with diseases of the central nervous system (CNS) were determined with the use of microextraction by packed sorbent (MEPS) followed by silylation and gas chromatography-mass spectrometry (GC-MS) analysis. MEPS with the following silylation led to the reproducible formation of derivatives with an unsubstituted hydrogen ion in the indole ring, the chromatographic peaks of which are symmetric and can be used for GC-MS analysis without additional derivatization. The recoveries of analytes at the limit of quantitation (LOQ) levels were 40-80% for pooled CSF and 40-60% for serum. The limit of detection (LOD) and LOQ values were 0.2-0.4 and 0.4-0.5 µM, respectively, for both CSF and serum. The precision (the reproducibility, RSD) value of less than 20% and the accuracy (the relative error, RE) value of less than ±20% at the LOQ concentrations meet the Food and Drug Administration (FDA) recommendations. Linear correlations for all analytes were determined over a potentially clinically significant range of concentrations (0.4-10 µM for serum, R2 ≥ 0.9942, and 0.4-7 µM for CSF, R2 ≥ 0.9949). Moreover, MEPS significantly reduced the matrix effect of serum compared to liquid-liquid extraction (LLE), which was revealed in the example of reducing the amount of cholesterol and its relative compounds.


Assuntos
Microextração em Fase Sólida , Triptofano/sangue , Triptofano/líquido cefalorraquidiano , Triptofano/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Triptofano/metabolismo
15.
Biochem Biophys Res Commun ; 517(4): 623-628, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31378367

RESUMO

Insoluble aggregated proteins are often associated with neurodegenerative diseases. Previously, we investigated chemical chaperones that prevent the aggregation of denatured proteins. Among these, 4-phenyl butyric acid (4-PBA) has well-documented chemical chaperone activity, but is required at doses that have multiple effects on cells, warranting further optimization of treatment regimens. In this study, we demonstrate chemical chaperone activities of the novel compound indole-3-propionic acid (IPA). Although it has already been reported that IPA prevents ß-amyloid aggregation, herein we show that this compound suppresses aggregation of denatured proteins. Our experiments with a cell culture model of Parkinson's disease are the first to show that IPA prevents endoplasmic reticulum (ER) stress and thereby protects against neuronal cell death. We suggest that IPA has potential for the treatment of neurodegenerative diseases and other diseases for which ER stress has been implicated.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indóis/farmacologia , Neurônios/patologia , Propionatos/farmacologia , Acetilação/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Indóis/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Propionatos/química , Desnaturação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , alfa-Sinucleína/metabolismo
16.
Nagoya J Med Sci ; 79(4): 477-486, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29238104

RESUMO

Indoxyl sulfate (IS) induces fibrosis and inflammation in kidneys via oxidative stress through the induction of transforming growth factor-ß1 (TGF-ß1) and monocyte chemotactic protein-1 (MCP-1). Furthermore, IS is a potent endogenous agonist for aryl hydrocarbon receptor (AHR), which regulates the transcription of genes such as cytochrome P450 (CYP) 1A1. Indole-3-propionic acid (IPA) is an antioxidant and has been reported to be neuroprotective. We determined whether IPA suppresses IS-induced expression of AHR, CYP1A1, TGF-ß1, and MCP-1 in proximal tubular cells. The effects of IS on the expression of AHR, CYP1A1, TGF-ß1, and MCP-1 were studied using normotensive rats and hypertensive rats. The effects of IPA on IS-induced expression of AHR, CYP1A1, TGF-ß1, and MCP-1 were studied using proximal tubular cells (HK-2). Furthermore, the effects of IPA on IS-induced expression and phosphorylation of signal transducer and activator of transcription 3 (Stat3) were studied in HK-2 cells. Administration of IS induced the expression of AHR, CYP1A1, TGF-ß1, and MCP-1 in the tubular cells of rat kidneys. IPA significantly suppressed IS-induced mRNA and protein expression of AHR, CYP1A1, TGF-ß1, and MCP-1 in HK-2 cells. IPA suppressed the IS-induced expression and phosphorylation of Stat3 in HK-2 cells. Furthermore, knockdown of Stat3 inhibited the IS-induced mRNA and protein expression of AHR, CYP1A1, TGF-ß1, and MCP-1 in HK-2 cells. In conclusion, IPA suppressed the IS-induced expression of AHR, CYP1A1, TGF-ß1, and MCP-1 through suppression of Stat3 in proximal tubular cells. Thus, IPA suppresses IS-induced expression of fibrotic and inflammatory genes in proximal tubular cells.


Assuntos
Indicã/toxicidade , Inflamação/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Propionatos/uso terapêutico , Animais , Western Blotting , Linhagem Celular , Quimiocina CCL2/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Humanos , Imuno-Histoquímica , Inflamação/genética , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
17.
J Inflamm Res ; 17: 5293-5309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157586

RESUMO

Background: Patients with sepsis frequently develop septic cardiomyopathy, which is known to be closely related to excessive inflammatory responses. Indole-3-propionic acid (IPA) is a tryptophan metabolite with anti-inflammatory properties that have been demonstrated in various studies. In this study, we investigated the underlying mechanisms and therapeutic role of IPA in septic cardiomyopathy. Methods: To investigate the role of IPA in septic cardiomyopathy, we constructed a lipopolysaccharide (LPS)-induced rat model of septic cardiomyopathy, and treated rats with IPA. Inflammatory factors and the NF-κB/NLRP3 pathway were evaluated in myocardial tissues and cells after IPA treatment using RT-qPCR, ELISA, Western blotting, and immunohistochemistry. To further elucidate the role of the aryl hydrocarbon receptor (AhR), we detected changes in inflammatory mediators and the NF-κB/NLRP3 pathway in in vivo and in vitro models of septic cardiomyopathy, which were treated with the AhR antagonist CH-223191 and/or AhR agonist FICZ. Results: IPA supplementation improved cardiac dysfunction in rats with septic cardiomyopathy. IPA reduced inflammatory cytokine release and inhibited NF-κB/NLRP3 signaling pathway in myocardial tissue and in H9c2 cells. CH-223191 impaired the anti-inflammatory effect of IPA in LPS-treated cells, whereas FICZ exerted the same effect as IPA. IPA also exhibited anti-inflammatory activity by binding to the AhR. Our results indicated that IPA attenuated septic cardiomyopathy in rats via AhR/NF-κB/NLRP3 signaling. Conclusion: Our study revealed that IPA improved left heart dysfunction and myocardial inflammation caused by sepsis via AhR/NF-κB/NLRP3 signaling, suggesting that IPA is a potential therapy for septic cardiomyopathy.

18.
Gut Microbes ; 16(1): 2325067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445660

RESUMO

The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Influenza Humana , Humanos , Animais , Camundongos , Propionatos , Triptofano , Inflamação , Poliaminas
19.
J Adv Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147198

RESUMO

INTRODUCTION: Gut microbes and their metabolites play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, which one and how specific gut-derived metabolites affect the progression of DKD remain largely unknown. OBJECTIVES: This study aimed to investigate the potential roles of indole-3-propionic acid (IPA), a microbial metabolite of tryptophan, in DKD. METHODS: Metagenomic sequencing was performed to analyze the microbiome structure in DKD. Metabolomics screening and validation were conducted to identify characteristic metabolites associated with DKD. The protective effect of IPA on DKD glomerular endothelial cells (GECs) was assessed through in vivo and in vitro experiments. Further validation via western blot, immunoprecipitation, gene knockout, and site-directed mutation elucidated the mechanism of IPA on mitochondrial injury. RESULTS: Alterations in gut microbial community structure and dysregulated tryptophan metabolism were evident in DKD mice. Serum IPA levels were significantly reduced in DKD patients and correlated with fasting blood glucose, HbA1c, urine albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). IPA supplementation ameliorated albuminuria, bolstered the integrity of the glomerular filtration barrier, and mitigated mitochondrial impairments in GECs. Mechanistically, IPA hindered SIRT1 phosphorylation-mediated ubiquitin-proteasome degradation, restoring SIRT1's role in promoting PGC-1α deacetylation and nuclear translocation, thereby upregulating genes associated with mitochondrial biosynthesis and antioxidant defense. CONCLUSION: Our findings underscore the potential of the microbial metabolite IPA to attenuate DKD progression, offering novel insights and potential therapeutic strategies for its management.

20.
Microbiome ; 12(1): 66, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549163

RESUMO

BACKGROUND: Microdeletion of the human chromosomal region 16p11.2 (16p11.2 + / - ) is a prevalent genetic factor associated with autism spectrum disorder (ASD) and other neurodevelopmental disorders. However its pathogenic mechanism remains unclear, and effective treatments for 16p11.2 + / -  syndrome are lacking. Emerging evidence suggests that the gut microbiota and its metabolites are inextricably linked to host behavior through the gut-brain axis and are therefore implicated in ASD development. Despite this, the functional roles of microbial metabolites in the context of 16p11.2 + / -  are yet to be elucidated. This study aims to investigate the therapeutic potential of indole-3-propionic acid (IPA), a gut microbiota metabolite, in addressing behavioral and neural deficits associated with 16p11.2 + / - , as well as the underlying molecular mechanisms. RESULTS: Mice with the 16p11.2 + / -  showed dysbiosis of the gut microbiota and a significant decrease in IPA levels in feces and blood circulation. Further, these mice exhibited significant social and cognitive memory impairments, along with hyperactivation of hippocampal dentate gyrus neurons and reduced inhibitory synaptic transmission in this region. However, oral administration of IPA effectively mitigated the histological and electrophysiological alterations, thereby ameliorating the social and cognitive deficits of the mice. Remarkably, IPA treatment significantly increased the phosphorylation level of ERK1, a protein encoded by the Mapk3 gene in the 16p11.2 region, without affecting the transcription and translation of the Mapk3 gene. CONCLUSIONS: Our study reveals that 16p11.2 + / -  leads to a decline in gut metabolite IPA levels; however, IPA supplementation notably reverses the behavioral and neural phenotypes of 16p11.2 + / -  mice. These findings provide new insights into the critical role of gut microbial metabolites in ASD pathogenesis and present a promising treatment strategy for social and cognitive memory deficit disorders, such as 16p11.2 microdeletion syndrome. Video Abstract.


Assuntos
Transtorno do Espectro Autista , Propionatos , Humanos , Camundongos , Animais , Transmissão Sináptica , Hipocampo , Indóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA