Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Cell ; 82(21): 4176-4188.e8, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36152632

RESUMO

Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.


Assuntos
Replicação do DNA , Hematopoese , Camundongos , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Dano ao DNA , Proliferação de Células
2.
Dev Biol ; 505: 99-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925124

RESUMO

Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.


Assuntos
Pepinos-do-Mar , Animais , Pepinos-do-Mar/fisiologia , Afidicolina , Intestinos , Proliferação de Células , Apoptose , Desdiferenciação Celular
3.
BMC Biol ; 22(1): 98, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679694

RESUMO

BACKGROUND: The ability of animals to regenerate damaged tissue is a complex process that involves various cellular mechanisms. As animals age, they lose their regenerative abilities, making it essential to understand the underlying mechanisms that limit regenerative ability during aging. Drosophila melanogaster wing imaginal discs are epithelial structures that can regenerate after tissue injury. While significant research has focused on investigating regenerative responses during larval stages our comprehension of the regenerative potential of pupal wings and the underlying mechanisms contributing to the decline of regenerative responses remains limited. RESULTS: Here, we explore the temporal dynamics during pupal development of the proliferative response triggered by the induction of cell death, a typical regenerative response. Our results indicate that the apoptosis-induced proliferative response can continue until 34 h after puparium formation (APF), beyond this point cell death alone is not sufficient to induce a regenerative response. Under normal circumstances, cell proliferation ceases around 24 h APF. Interestingly, the failure of reinitiating the cell cycle beyond this time point is not attributed to an incapacity to activate the JNK pathway. Instead, our results suggest that the function of the ecdysone-responsive transcription factor E93 is involved in limiting the apoptosis-induced proliferative response during pupal development. CONCLUSIONS: Our study shows that apoptosis can prolong the proliferative period of cells in the wing during pupal development as late as 34 h APF, at least 10 h longer than during normal development. After this time point, the regenerative response is diminished, a process mediated in part by the ecdysone-responsive transcription factor E93.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Drosophila , Drosophila melanogaster , Pupa , Regeneração , Fatores de Transcrição , Asas de Animais , Animais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regeneração/fisiologia
4.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923792

RESUMO

Immune homeostasis is a tightly regulated system that is critical for defense against invasion by foreign pathogens and protection from self-reactivity for the survival of an individual. How the defects in this system might result in autoimmunity is discussed in this review. Reduced lymphocyte number, termed lymphopenia, can mediate lymphopenia-induced proliferation (LIP) to maintain peripheral lymphocyte numbers. LIP not only occurs in normal physiological conditions but also correlates with autoimmunity. Of note, lymphopenia is also a typical marker of immune aging, consistent with the fact that not only the autoimmunity increases in the elderly, but also autoimmune diseases (ADs) show characteristics of immune aging. Here, we discuss the types and rates of LIP in normal and autoimmune conditions, as well as the coronavirus disease 2019 in the context of LIP. Importantly, although the causative role of LIP has been demonstrated in the development of type 1 diabetes and rheumatoid arthritis, a two-hit model has suggested that the factors other than lymphopenia are required to mediate the loss of control over homeostasis to result in ADs. Interestingly, these factors may be, if not totally, related to the function/number of regulatory T cells which are key modulators to protect from self-reactivity. In this review, we summarize the important roles of lymphopenia/LIP and the Treg cells in various autoimmune conditions, thereby highlighting them as key therapeutic targets for autoimmunity treatments.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfopenia/complicações , Linfopenia/imunologia , Animais , COVID-19/complicações , Proliferação de Células/fisiologia , Homeostase/imunologia , Humanos , Linfócitos T Reguladores/imunologia
5.
Semin Cell Dev Biol ; 80: 74-82, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28688927

RESUMO

Apoptosis-induced compensatory proliferation (AiP) is a form of compensatory proliferation that is triggered by apoptotic cell death to maintain tissue homeostasis. As such, AiP is essential for many tissue repair processes including regeneration. The apoptotic effectors, termed caspases, not only execute apoptosis, but are also directly involved in the generation of the signals required for AiP. Reactive oxygen species (ROS) play an important role for regenerative processes. Recently, it was shown in Drosophila that apoptotic caspases can mediate the generation of ROS for promoting AiP. This review summarizes and discusses these findings in the context of regenerative processes and cancer.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração/fisiologia , Animais , Humanos , Transdução de Sinais/fisiologia
6.
Scand J Immunol ; 91(6): e12888, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32281665

RESUMO

We propose a framework to explain how T cells achieve specificity and sensitivity, how the affinity of the TcR peptide/MHC interaction controls positive and negative thymic selection and mature T cell survival, and whether antigen-dependent activation and inactivation takes place. Two distinct types of signalling can lead to mature T cell multiplication. One requires the TcR to recognize with a certain affinity an antigen-derived peptide, an agonist peptide, bound to an MHC molecule. The other, the tonic signal, leads to naïve T cell survival and modest proliferation if the T cell successfully competes for endogenous, self-peptide/MHC ligands, involving lower affinity TCR/ligand interactions. Many suggest lymphopenia contributes to autoimmunity by increasing the strength of TcR-tonic signalling, and so activation of anti-self T cells. We suggest T cell activation requires antigen-mediated cooperation between T cells. Increased tonic signalling under lymphopenic conditions facilitates T cell proliferation and so antigen-dependent cooperation and activation of anti-self T cells.


Assuntos
Linfopenia/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Autoantígenos/imunologia , Autoantígenos/metabolismo , Autoimunidade , Comunicação Celular , Diferenciação Celular , Sobrevivência Celular , Antígenos de Histocompatibilidade/metabolismo , Humanos , Ativação Linfocitária , Modelos Imunológicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
7.
Bioorg Med Chem Lett ; 30(11): 127134, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32253062

RESUMO

The rate of drug-induced proliferation (DIP) has been proposed as an unbiased alternative drug effect metric. However, current assays are not easy and precise enough to track minor changes in cell growth. Here, we report the optimized EZMTT based detection method which can continuously measure time-dependent growth after drug treatment and reliably detect partial drug resistance for cancer cells. Importantly, tracking time-dependent growth after drug treatment demonstrated that a KGA allosteric inhibitor alone failed to completely inhibit cancer cell growth, but a drug combination was able to provide complete inhibition in cell-based assays that translated well in in vivo animal experiments. In conclusion, this simple EZMTT method provided precise measurement of loss of susceptibility after drug treatment and has great potential to be developed for drug efficacy and drug combination studies to solve the unmet medical need.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Glutaminase/química , Glutaminase/metabolismo , Humanos , Concentração Inibidora 50 , Paclitaxel/química , Paclitaxel/farmacologia , Sirolimo/química , Sirolimo/farmacologia
8.
BMC Biotechnol ; 19(1): 21, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987611

RESUMO

BACKGROUND: A robust scalable method for producing enucleated red blood cells (RBCs) is not only a process to produce packed RBC units for transfusion but a potential platform to produce modified RBCs with applications in advanced cellular therapy. Current strategies for producing RBCs have shortcomings in the limited self-renewal capacity of progenitor cells, or difficulties in effectively enucleating erythroid cell lines. We explored a new method to produce RBCs by inducibly expressing c-Myc in primary erythroid progenitor cells and evaluated the proliferative and maturation potential of these modified cells. RESULTS: Primary erythroid progenitor cells were genetically modified with an inducible gene transfer vector expressing a single transcription factor, c-Myc, and all the gene elements required to achieve dox-inducible expression. Genetically modified cells had enhanced proliferative potential compared to control cells, resulting in exponential growth for at least 6 weeks. Inducibly proliferating erythroid (IPE) cells were isolated with surface receptors similar to colony forming unit-erythroid (CFU-Es), and after removal of ectopic c-Myc expression cells hemoglobinized, decreased in cell size to that of native RBCs, and enucleated achieving cultures with 17% enucleated cells. Experiments with IPE cells at various levels of ectopic c-Myc expression provided insight into differentiation dynamics of the modified cells, and an optimized two-stage differentiation strategy was shown to promote greater expansion and maturation. CONCLUSIONS: Genetic engineering of adult erythroid progenitor cells with an inducible c-Myc vector established an erythroid progenitor cell line that could produce RBCs, demonstrating the potential of this approach to produce large quantities of RBCs and modified RBC products.


Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Eritrócitos/metabolismo , Células Precursoras Eritroides/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular , Eritrócitos/citologia , Células Precursoras Eritroides/citologia , Engenharia Genética/métodos , Vetores Genéticos/genética , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Ratos
9.
Adv Exp Med Biol ; 1167: 65-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31520349

RESUMO

Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.


Assuntos
Apoptose , Carcinogênese , Proliferação de Células , Neoplasias/patologia , Animais , Humanos , Espécies Reativas de Oxigênio , Regeneração
10.
Adv Exp Med Biol ; 1167: 1-14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31520346

RESUMO

Cancer is a cumulative manifestation of several complicated disease states that affect multiple organs. Over the last few decades, the fruit fly Drosophila melanogaster, has become a successful model for studying human cancers. The genetic simplicity and vast arsenal of genetic tools available in Drosophila provides a unique opportunity to address questions regarding cancer initiation and progression that would be extremely challenging in other model systems. In this chapter we provide a historical overview of Drosophila as a model organism for cancer research, summarize the multitude of genetic tools available, offer a brief comparison between different model organisms and cell culture platforms used in cancer studies and briefly discuss some of the latest models and concepts in recent Drosophila cancer research.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster , Neoplasias , Animais , Pesquisa Biomédica/tendências , Humanos
11.
Eur J Immunol ; 47(1): 68-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27792294

RESUMO

T-cell division is central to maintaining a stable T-cell pool in adults. It also enables T-cell expansion in neonates, and after depletion by chemotherapy, bone marrow transplantation, or infection. The same signals required for T-cell survival in lymphoreplete settings, IL-7 and T-cell receptor (TCR) interactions with self-peptide MHC (pMHC), induce division when T-cell numbers are low. The strength of reactivity for self-pMHC has been shown to correlate with the capacity of T cells to undergo lymphopenia-induced proliferation (LIP), in that weakly self-reactive T cells are unable to divide, implying that T-cell reconstitution would significantly skew the TCR repertoire toward TCRs with greater self-reactivity and thus compromise T-cell diversity. Here, we show that while CD4+ T cells with low self-pMHC reactivity experience more intense competition, they are able to divide when present at low enough cell numbers. Thus, at physiological precursor frequencies CD4+ T cells with low self-pMHC reactivity are able to contribute to the reconstitution of the T-cell pool.


Assuntos
Autoimunidade , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Células Clonais , Expressão Gênica , Homeostase , Imunofenotipagem , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Linfopenia/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo
12.
Exp Cell Res ; 352(2): 357-363, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237246

RESUMO

Signal-induced proliferation-associated protein 1 (SIPA1) is known to be a GTPase activating protein. Overexpressed SIPA1 is related to metastatic progression in breast and prostate cancers; however, the relevance of SIPA1 in oral squamous cell carcinoma (OSCC) is still unknown. The aim of this study was to examine SIPA1 expression and its functional mechanisms in OSCC. SIPA1 mRNA and protein expressions were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. The expressions of SIPA1 were up-regulated significantly in vitro and in vivo. Moreover, SIPA1 expression was correlated with regional lymph node metastasis. We next assessed the cellular functions associated with tumoral metastasis using SIPA1 knockdown (shSIPA1) cells and analyzed the downstream molecules of SIPA1, i.e., bromodomain containing protein 4(BRD4), integrin beta1 (ITGB1), and matrix metalloproteinase 7 (MMP7). The shSIPA1 cells showed decreased invasiveness and migratory activities, however cellular adhesion ability was maintained at a high level. In addition, ITGB1 expression was greater in shSIPA1 cells, whereas MMP7 expression was lower than in control cells. This research is the first to establish that SIPA1 promotes cancer metastasis by regulating the ITGB1 and MMP7. Therefore, SIPA1 might be a novel therapeutic target for patients with lymph node metastasis of OSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Bucais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proteínas Ativadoras de GTPase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metástase Linfática , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas Nucleares/genética
13.
BMC Biol ; 14: 70, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27542914

RESUMO

BACKGROUND: ATG1 belongs to the Uncoordinated-51-like kinase protein family. Members of this family are best characterized for roles in macroautophagy and neuronal development. Apoptosis-induced proliferation (AiP) is a caspase-directed and JNK-dependent process which is involved in tissue repair and regeneration after massive stress-induced apoptotic cell loss. Under certain conditions, AiP can cause tissue overgrowth with implications for cancer. RESULTS: Here, we show that Atg1 in Drosophila (dAtg1) has a previously unrecognized function for both regenerative and overgrowth-promoting AiP in eye and wing imaginal discs. dAtg1 acts genetically downstream of and is transcriptionally induced by JNK activity, and it is required for JNK-dependent production of mitogens such as Wingless for AiP. Interestingly, this function of dAtg1 in AiP is independent of its roles in autophagy and in neuronal development. CONCLUSION: In addition to a role of dAtg1 in autophagy and neuronal development, we report a third function of dAtg1 for AiP.


Assuntos
Apoptose , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Drosophila/metabolismo , Drosophila/genética , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/genética , Olho/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases , Ativação Transcricional , Asas de Animais/crescimento & desenvolvimento
14.
Cancer Immunol Immunother ; 65(3): 341-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880265

RESUMO

Induction of lymphopenia before adoptive transfer of T cells was followed by lymphopenia-induced proliferation (LIP) and generated a potent anti-tumor immune response in rodents and in a clinical setting. Previously, we reported that CD28 signaling is essential for the differentiation of functional effector cytotoxic T lymphocytes (CTLs) under lymphopenic conditions and sequential LIP of T cells. In this study, to clarify the correlation between LIP and the anti-tumor effect, LIP was inhibited with interleukin 7 (IL7) receptor blockade at various stages, and the anti-tumor effect then assessed. We confirmed that IL7 signaling at the start of LIP is crucial for the anti-tumor immune response. In contrast, continuous IL7 signaling was not required for tumor regression, although LIP of naïve CD8+ T cells is usually regulated by IL7. The expansion and migration of CTLs in lymphopenic hosts depend on IL7 signaling during the induction phase. Here, we propose that IL7 signaling and subsequent LIP of T cells have distinct roles in the induction of T cell immunity during lymphopenia.


Assuntos
Interleucina-7/fisiologia , Neoplasias Pulmonares/imunologia , Linfopenia/imunologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Lectinas Tipo C , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/análise , Receptores de Interleucina-7/fisiologia , Linfócitos T Citotóxicos/imunologia
15.
Adv Exp Med Biol ; 930: 89-112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27558818

RESUMO

Apoptosis, a major form of programmed cell death, is an important mechanism to remove extra or unwanted cells during development. In tissue homeostasis apoptosis also acts as a monitoring machinery to eliminate damaged cells in response to environmental stresses. During these processes, caspases, a group of proteases, have been well defined as key drivers of cell death. However, a wealth of evidence is emerging which supports the existence of many other non-apoptotic functions of these caspases, which are essential not only in proper organism development but also in tissue homeostasis and post-injury recovery. In particular, apoptotic caspases in stress-induced dying cells can activate mitogenic signals leading to proliferation of neighbouring cells, a phenomenon termed apoptosis-induced proliferation. Apparently, such non-apoptotic functions of caspases need to be controlled and restrained in a context-dependent manner during development to prevent their detrimental effects. Intriguingly, accumulating studies suggest that cancer cells are able to utilise these functions of caspases to their advantage to enable their survival, proliferation and metastasis in order to grow and progress. This book chapter will review non-apoptotic functions of the caspases in development and tissue homeostasis with focus on how these cellular processes can be hijacked by cancer cells and contribute to tumourigenesis.


Assuntos
Apoptose/fisiologia , Caspases/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/enzimologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Carcinogênese , Divisão Celular , Dano ao DNA , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Homeostase , Humanos , Mamíferos/fisiologia , Mitose , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/fisiopatologia , Receptores de Morte Celular/fisiologia , Transdução de Sinais/fisiologia
16.
Biol Blood Marrow Transplant ; 19(10): 1430-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23819914

RESUMO

Administration of cyclophosphamide after transplantation (post-transplantation cyclophosphamide, PTC) has shown promise in the clinic as a prophylactic agent against graft-versus-host disease (GVHD). An important issue with regard to recipient immune function and reconstitution after PTC is the extent to which, in addition to diminution of antihost allo-reactive donor T cells, the remainder of the nonhost allo-reactive donor T cell pool may be affected. To investigate PTC's effects on nonhost reactive donor CD8 T cells, ova-specific (OT-I) and gp100-specific Pmel-1 T cells were labeled with proliferation dyes and transplanted into syngeneic and allogeneic recipients. Notably, an intermediate dose (66 mg/kg) of PTC, which abrogated GVHD after allogeneic HSCT, did not significantly diminish these peptide-specific donor T cell populations. Analysis of the rate of proliferation after transplantation illustrated that lymphopenic-driven, donor nonhost reactive TCR Tg T cells in syngeneic recipients underwent slow division, resulting in significant sparing of these donor populations. In contrast, after exposure to specific antigens at the time of transplantation, these same T cells were significantly depleted by PTC, demonstrating the global susceptibility of rapidly dividing T cells after an encounter with cognate antigen. In total, our results, employing both syngeneic and allogeneic minor antigen-mismatched T cell replete models of transplantation, demonstrate a concentration of PTC that abrogates GVHD can preserve most cells that are dividing because of the accompanying lymphopenia after exposure. These findings have important implications with regard to immune function and reconstitution in recipients after allogeneic hematopoietic stem cell transplantation.


Assuntos
Ciclofosfamida/administração & dosagem , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Linfopenia/imunologia , Linfócitos T/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante Homólogo
17.
Am J Transplant ; 13(9): 2268-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23834725

RESUMO

Lymphopenia is induced by lymphoablative therapies and chronic viral infections. We assessed the impact of lymphopenia on cardiac allograft survival in recipients conditioned with peritransplant costimulatory blockade (CB) to promote long-term graft acceptance. After vascularized MHC-mismatched heterotopic heart grafts were stably accepted through CB, lymphopenia was induced on day 60 posttransplant by 6.5 Gy irradiation or by administration of anti-CD4 plus anti-CD8 mAb. Long-term surviving allografts were gradually rejected after lymphodepletion (MST = 74 ± 5 days postirradiation). Histological analyses indicated signs of severe rejection in allografts following lymphodepletion, including mononuclear cell infiltration and obliterative vasculopathy. Lymphodepletion of CB conditioned recipients induced increases in CD44(high) effector/memory T cells in lymphatic organs and strong recovery of donor-reactive T cell responses, indicating lymphopenia-induced proliferation (LIP) and donor alloimmune responses occurring in the host. T regulatory (CD4(+) Foxp(3+)) cell and B cell numbers as well as donor-specific antibody titers also increased during allograft rejection in CB conditioned recipients given lymphodepletion. These observations suggest that allograft rejection following partial lymphocyte depletion is mediated by LIP of donor-reactive memory T cells. As lymphopenia may cause unexpected rejection of stable allografts, adequate strategies must be developed to control T cell proliferation and differentiation during lymphopenia.


Assuntos
Rejeição de Enxerto/imunologia , Transplante de Coração , Linfopenia/imunologia , Tolerância Periférica/imunologia , Tolerância ao Transplante/efeitos dos fármacos , Transferência Adotiva , Aloenxertos , Animais , Feminino , Linfopenia/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T , Irradiação Corporal Total
18.
Mol Carcinog ; 52 Suppl 1: E110-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23661532

RESUMO

Signal-induced proliferation associated gene 1 (Sipa1) is a signal transducer to activate the Ras-related proteins and modulate cell progression, differentiation, adhesion and cancer metastasis. In this study, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in Sipa1 are associated with lung cancer risk and metastasis. Three common SNPs (rs931127A > G, rs2448490G > A, and rs3741379G > T) were genotyped in a discovery set of southern Chinese population and then validated the promising SNPs in a validation set of an eastern Chinese population in a total of 1559 lung cancer patients and 1679 cancer-free controls. The results from the two sets were consistent, the rs931127GG variant genotype had an increased risk of lung cancer compared to the rs931127AA/GA genotypes (OR = 1.27; 95% CI = 1.09-1.49) after combination of the two populations, and the rs931127GG interacted with pack-year smoked on increasing lung cancer risk (P = 0.037); this SNP also had an effect on patients' clinical stages (P = 0.012) that those patients with the rs931127GG genotype had a significant higher metastasis rate and been advanced N, M stages at diagnosis. However, these associations were not observed for rs2448490G > A and rs3741379G > T in the discovery set. Our data suggest that the SNP rs931127A > G in the promoter of Sipa1 was significantly associated with lung cancer risk and metastasis, which may be a biomarker to predict the risk and metastasis of lung cancer.


Assuntos
Povo Asiático/genética , Proteínas Ativadoras de GTPase/genética , Neoplasias Pulmonares/etiologia , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Carcinoma de Pequenas Células do Pulmão/etiologia , Adenocarcinoma/etiologia , Adenocarcinoma/secundário , Biomarcadores Tumorais/genética , Carcinoma de Células Grandes/etiologia , Carcinoma de Células Grandes/secundário , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/secundário , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase , Prognóstico , Fatores de Risco , Carcinoma de Pequenas Células do Pulmão/secundário , Taxa de Sobrevida
19.
Cell Rep ; 39(7): 110817, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584678

RESUMO

Drosophila Toll-1 and all mammalian Toll-like receptors regulate innate immunity. However, the functions of the remaining eight Toll-related proteins in Drosophila are not fully understood. Here, we show that Drosophila Toll-9 is necessary and sufficient for a special form of compensatory proliferation after apoptotic cell loss (undead apoptosis-induced proliferation [AiP]). Mechanistically, for AiP, Toll-9 interacts with Toll-1 to activate the intracellular Toll-1 pathway for nuclear translocation of the NF-κB-like transcription factor Dorsal, which induces expression of the pro-apoptotic genes reaper and hid. This activity contributes to the feedback amplification loop that operates in undead cells. Given that Toll-9 also functions in loser cells during cell competition, we define a general role of Toll-9 in cellular stress situations leading to the expression of pro-apoptotic genes that trigger apoptosis and apoptosis-induced processes such as AiP. This work identifies conceptual similarities between cell competition and AiP.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Apoptose/genética , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retroalimentação , Mamíferos/metabolismo
20.
Front Cell Dev Biol ; 9: 779169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096814

RESUMO

Increased dependence on aerobic glycolysis is characteristic of most cancer cells, whereas the mechanism underlying the promotion of aerobic glycolysis in metastatic breast cancer cells under ambient oxygen has not been well understood. Here, we demonstrated that aberrant expression of signal-induced proliferation-associated 1 (SIPA1) enhanced aerobic glycolysis and altered the main source of ATP production from oxidative phosphorylation to glycolysis in breast cancer cells. We revealed that SIPA1 promoted the transcription of EPAS1, which is known as the gene encoding hypoxia-inducible factor-2α (HIF-2α) and up-regulated the expression of multiple glycolysis-related genes to increase aerobic glycolysis. We also found that blocking aerobic glycolysis by either knocking down SIPA1 expression or oxamate treatment led to the suppression of tumor metastasis of breast cancer cells both in vitro and in vivo. Taken together, aberrant expression of SIPA1 resulted in the alteration of glucose metabolism from oxidative phosphorylation to aerobic glycolysis even at ambient oxygen levels, which might aggravate the malignancy of breast cancer cells. The present findings indicate a potential target for the development of therapeutics against breast cancers with dysregulated SIPA1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA