Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Trends Immunol ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39438171

RESUMO

Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.

2.
Am J Respir Crit Care Med ; 207(9): 1214-1226, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731066

RESUMO

Rationale: Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm and lung hypoplasia. The pathophysiology of lung defects in CDH is poorly understood. Objectives: To establish a translational model of human airway epithelium in CDH for pathogenic investigation and therapeutic testing. Methods: We developed a robust methodology of epithelial progenitor derivation from tracheal aspirates of newborns. Basal stem cells (BSCs) from patients with CDH and preterm and term non-CDH control subjects were derived and analyzed by bulk RNA sequencing, assay for transposase accessible chromatin with sequencing, and air-liquid interface differentiation. Lung sections from fetal human CDH samples and the nitrofen rat model of CDH were subjected to histological assessment of epithelial defects. Therapeutics to restore epithelial differentiation were evaluated in human epithelial cell culture and the nitrofen rat model of CDH. Measurements and Main Results: Transcriptomic and epigenetic profiling of CDH and control BSCs reveals a proinflammatory signature that is manifested by hyperactive nuclear factor kappa B and independent of severity and hernia size. In addition, CDH BSCs exhibit defective epithelial differentiation in vitro that recapitulates epithelial phenotypes found in fetal human CDH lung samples and fetal tracheas of the nitrofen rat model of CDH. Furthermore, blockade of nuclear factor kappa B hyperactivity normalizes epithelial differentiation phenotypes of human CDH BSCs in vitro and in nitrofen rat tracheas in vivo. Conclusions: Our findings have identified an underlying proinflammatory signature and BSC differentiation defects as a potential therapeutic target for airway epithelial defects in CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Recém-Nascido , Ratos , Humanos , Animais , NF-kappa B , Ratos Sprague-Dawley , Éteres Fenílicos , Pulmão/patologia , Modelos Animais de Doenças
3.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731523

RESUMO

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Assuntos
Sobrevivência Celular , Macrófagos , Microplásticos , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Nanopartículas/química , Plásticos/química , Células RAW 264.7 , Expressão Gênica/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Resíduos/análise , Tamanho da Partícula
4.
J Biochem Mol Toxicol ; 37(12): e23495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577756

RESUMO

This work was conducted to synthesize whey protein nanoparticles (WPNPs) for the coating of zinc citrate (Zn CITR) at three levels and to study their protective role against CCl4 -induced kidney damage and inflammatory gene expression disorder in rats. Seventy male Sprague-Dawley rats were divided into seven groups and treated orally for 4 weeks as follows; the control group, the group treated twice a week with CCl4 (5 mL/kg b.w), the groups received CCl4 plus WPNPs (300 mg/kg b.w); the group received 50 mg/kg b.w of Zn CITR or the three formulas of Zn CITR-WPNPs at low, medium and high doses (LD, MD, and HD). Blood and kidney samples were collected for different assays and histological analyses. The fabricated particles were semispherical, with an average size of 160 ± 2.7, 180 ± 3.1, and 200 ± 2.6 nm and ζ potential of -126, -93, and -84 mV for ZN CITR-WPNPs (LD), Zn CITR-WPNPs (MD), and ZN CITR-WPNPs (HD), respectively. CCl4 significantly increased (p ≤ 0.05) kidney function indices, oxidative stress markers, messenger RNA expression of transforming growth factor-ß1, interleukin (IL)-1ß, IL-10, IL-6, inducible nitric oxide synthase, and tumor necrosis factor-α and significantly decreased (p ≤ 0.05) renal superoxide dismutase, catalase, and glutathione peroxidase along with the histological changes in the kidney tissues. WPNPs, Zn CITR, and Zn CITR loaded WPNPS showed a protective effect against these complications and Zn CITR-WPNPs (LD) was more effective. WPNPs can be used effectively for coating Zn CITR at a level of 7 mg/g WPNPs to be used as a supplement for the protection of the kidney against different toxicants to enhance immunity and avoid harm of excess Zn.


Assuntos
Nefropatias , Nanopartículas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/uso terapêutico , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo , Rim , Citratos/metabolismo , Citratos/farmacologia , Citratos/uso terapêutico , Expressão Gênica , Zinco/metabolismo
5.
Brain Behav Immun ; 103: 171-177, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35427760

RESUMO

Mindfulness meditation training has been shown to be an effective stress reduction strategy, but less is known about its immunoregulatory impact. In a randomized controlled trial of stressed customer service workers, the present study tested whether a 30-day smartphone-based mindfulness meditation training program (compared to a problem-solving control program) would affect pro-inflammatory gene expression. Both interventions led to reductions in stress levels, but there was no difference in stress reduction between conditions. Consistent with predictions, mindfulness training reduced activity of the pro-inflammatory NF-κB transcription control pathway compared to the active control. These results suggest that mindfulness training may be a particularly effective method for improving immune cell gene expression in stressful work environments.


Assuntos
Meditação , Atenção Plena , Adulto , Expressão Gênica , Humanos , Meditação/métodos , Atenção Plena/métodos , Smartphone , Estresse Psicológico/genética , Estresse Psicológico/terapia
6.
FASEB J ; 34(6): 7427-7441, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378256

RESUMO

8-Oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair (BER) is the primary pathway to remove the pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Recent studies documented 8-oxoG serves as an epigenetic-like mark and OGG1 modulates gene expression in oxidatively stressed cells. For this new role of OGG1, two distinct mechanisms have been proposed: one is coupled to base excision, while the other only requires substrate binding of OGG1--both resulting in conformational adjustment in the adjacent DNA sequences providing access for transcription factors to their cis-elements. The present study aimed to examine if BER activity of OGG1 is required for pro-inflammatory gene expression. To this end, Ogg1/OGG1 knockout/depleted cells were transfected with constructs expressing wild-type (wt) and repair-deficient mutants of OGG1. OGG1's promoter enrichment, oxidative state, and gene expression were examined. Results showed that TNFα exposure increased levels of oxidatively modified cysteine(s) of wt OGG1 without impairing its association with promoter and facilitated gene expression. The excision deficient K249Q mutant was even a more potent activator of gene expression; whereas, mutant OGG1 with impaired substrate recognition/binding was not. These data suggested the interaction of OGG1 with its substrate at regulatory regions followed by conformational adjustment in the adjacent DNA is the primary mode to modulate inflammatory gene expression.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular , Dano ao DNA/fisiologia , Guanina/análogos & derivados , Guanina/metabolismo , Células HEK293 , Humanos , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Hepatol ; 73(6): 1460-1469, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32710922

RESUMO

BACKGROUND & AIMS: Nivolumab, a programmed death (PD)-1 (PD-1) inhibitor, led to durable responses, manageable safety, and increased survival in patients with advanced hepatocellular carcinoma (HCC). In our retrospective analysis, we studied the immunobiology and potential associations between biomarkers and outcomes with nivolumab in HCC. METHODS: Fresh and archival tumour samples from dose-escalation and dose-expansion phases of the CheckMate 040 trial were analysed by immunohistochemistry and RNA sequencing to assess several inflammatory gene expression signatures, including CD274 (PD-ligand 1 [PD-L1]), CD8A, LAG3, and STAT1. Biomarkers were assessed for association with clinical outcomes (best overall response by blinded independent central review per RECIST v1.1 and overall survival [OS]). RESULTS: Complete or partial tumour responses were observed in PD-L1-positive and PD-L1-negative patients treated with nivolumab monotherapy. Median OS was 28.1 (95% CI 18.2-n.a.) vs. 16.6 months (95% CI 14.2-20.2) for patients with tumour PD-L1 ≥1% vs. <1% (p = 0.03). Increased CD3 and CD8 showed a non-significant trend towards improved OS (both p = 0.08), and macrophage markers were not associated with OS. Tumour PD-1 and PD-L1 expression were associated with improved OS (p = 0.05 and p = 0.03, respectively). An inflammatory gene signature consisting of 4 genes was associated with improved objective response rate (p = 0.05) and OS (p = 0.01). CONCLUSIONS: PD-1 and PD-L1 expression, biomarkers of inflammation, and inflammatory gene signatures trended with improved survival and response. While further confirmation within a larger phase III trial is needed to evaluate predictive value of these biomarkers, these exploratory analyses suggest that anti-tumour immune response may play a role in the treatment benefit of nivolumab in HCC. LAY SUMMARY: Certain tests may be used to provide a picture of how a tumour is escaping the immune system, allowing it to continue to grow and create more tumours. Therapies such as nivolumab are designed to help the immune system fight the tumour. These tests may be used to determine how effective such therapies will be in the treatment of advanced liver cancer. NCT NUMBER: NCT01658878.


Assuntos
Biomarcadores Farmacológicos/análise , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígenos CD/análise , Antígeno B7-H1/análise , Biomarcadores Tumorais/análise , Antígenos CD8/análise , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Imuno-Histoquímica , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Nivolumabe/administração & dosagem , Nivolumabe/efeitos adversos , Fator de Transcrição STAT1/análise , Análise de Sobrevida , Proteína do Gene 3 de Ativação de Linfócitos
8.
J Intern Med ; 288(2): 219-233, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32406570

RESUMO

OBJECTIVE: Patients undergoing bariatric surgery present long-term metabolic improvements and reduced type 2 diabetes risk, despite long-term weight regain. We hypothesized that part of these protective effects could be linked to altered gene expression in white adipose tissue (WAT). METHODS: Transcriptomic profiling by gene microarray was performed in abdominal subcutaneous WAT from women before (n = 50) and two (n = 49) and five (n = 38) years after Roux-en-Y gastric bypass (RYGB) surgery as well as in 28 age-matched nonoperated women. RESULTS: In the obese women, the average body weight decrease was 38 kg 2 years postsurgery followed by an 8 kg weight regain between 2 and 5 years. Most of the long-term changes in WAT gene expression occurred during the first 2 years. However, a subset of genes encoding proteins involved in inflammation displayed a continued decrease between baseline, 2 and 5 years, respectively; that is an expression pattern independent of body weight regain. Expression of 71 of these genes correlated with measurements of adipocyte morphology or serum adipokine levels. CONCLUSION: The continuous improvement in WAT inflammatory gene expression, despite body weight relapse, may contribute to the sustained effects on adipose morphology after bariatric surgery.


Assuntos
Derivação Gástrica , Expressão Gênica , Gordura Subcutânea Abdominal/metabolismo , Adipócitos , Adiponectina/sangue , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Contagem de Células , Tamanho Celular , Regulação para Baixo , Feminino , Seguimentos , Ontologia Genética , Humanos , Leptina/sangue , Pessoa de Meia-Idade , Análise Serial de Tecidos , Regulação para Cima
9.
Fish Shellfish Immunol ; 97: 367-374, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31866449

RESUMO

A total of 180 unsexed Nile Tilapia fish (initial weight, 21 g) fed isonitrogenous (32%), isocaloric (3000 kcal/kg) diets containing different levels of guanidinoacetic acid (GAA) at levels of (GAA1, 0.06%, GAA2, 0.12%, GAA3, 0.18%); for 60 days. Results showed higher final body weight (FBW) and body weight gain (BWG) in groups supplemented with different levels of GAA. Specific growth rate (SGR) was the highest in groups supplemented with 0.12% and 0.18% GAA. Lipid % of whole-body composition was higher in all groups excluding GAA3 group. Serum creatine kinase (CK) activity, cholesterol, and creatinine levels showed a marked significant (P < 0.05) increase in all GAA supplemented groups compared to the control one. Triglycerides level demonstrated a higher elevation (P < 0.05) in both GAA2 and GAA3 supplemented groups. No significant observed in total protein, albumin, globulin, and A/G ratio. Lipid peroxidation marker (malondialdehyde/MDA) is markedly decreased along with a significant increase of superoxide dismutase (SOD), reduced glutathione (GSH), and nitric oxide (NO) levels in both GAA2 and GAA3 compared to other groups. Similarly, interleukin 1ß (IL-1ß) and tumor necrosis factor (TNF-α) gene expression levels were downregulated along with upregulation of transforming growth factor ß1 (TGF-ß1) at higher GAA levels, particularly at 0.18%. Our findings give important insights for the growth promoting, antioxidant and immunomodulatory effects of GAA supplemented diet particularly at level of 0.18%.


Assuntos
Antioxidantes/metabolismo , Ciclídeos/imunologia , Citocinas/imunologia , Glicina/análogos & derivados , Ração Animal/análise , Animais , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Citocinas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Glicina/administração & dosagem , Glicina/metabolismo , Distribuição Aleatória
10.
Pancreatology ; 17(3): 372-380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28291657

RESUMO

BACKGROUND: oxidized phospholipids (oxPLs) generated in inflammatory diseases could play a key role by inducing pro- and anti-inflammatory effects. OBJETIVES: we investigated the effect of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and oxidized POPC (oxPOPC) in the inflammatory response triggered in pancreatic acini. METHODS: control acini were incubated in the absence or presence of either POPC or oxPOPC (≤100 µM). In additional experiments, oxPOPC effects were evaluated in sodium taurocholate (NaTc)-treated acini. CCL2 and TLR4 mRNA expression was analyzed by RT-qPCR. By western blot, JNK-MAPK, JAK and IκBα in cytoplasm as well as p65-NF-kB and p-STAT3 in the nucleus were evaluated. The involvement of TLR4, JNK-MAPK, JAK as well as NF-kB, STAT3 and PPARγ was assessed using pharmacological inhibition. RESULTS: no effect was found in response to POPC. Conversely, in response to oxPOPC (10 µM), JNK-MAPK and JAK acted as TLR4-downstream signals, leading to CCL2 upregulation mainly through NF-kB activation. Moreover, TLR4 non-dependent mechanisms induced STAT3 activation in oxPOPC-treated acini. Mediated by PPARγ, oxPOPC (50 µM) inhibited the CCL2 overexpression found in NaTc-treated acini. CONCLUSIONS: oxPOPC exerts pro- and anti-inflammatory effects in pancreatic acinar cells mediated by TLR4 and PPARγ signals, respectively. This dual action proved to be dependent on the concentration. The molecular mechanisms involved in the oxPL response could be useful for new therapeutic approaches to the treatment of oxPLs-related inflammatory pathologies.


Assuntos
Células Acinares/metabolismo , Ácidos e Sais Biliares/farmacologia , Quimiocina CCL2/biossíntese , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Fosfolipídeos/farmacologia , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Oxirredução , PPAR gama/metabolismo , Fosfatidilcolinas/farmacologia , Ratos , Ratos Wistar , Ácido Taurocólico/farmacologia , Receptor 4 Toll-Like/biossíntese
11.
J Allergy Clin Immunol ; 134(6): 1301-1309.e11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262465

RESUMO

BACKGROUND: The human commensal microbiota interacts in a complex manner with the immune system, and the outcome of these interactions might depend on the immune status of the subject. OBJECTIVE: Previous studies have suggested a strong allergy-protective effect for Gammaproteobacteria. Here we analyze the skin microbiota, allergic sensitization (atopy), and immune function in a cohort of adolescents, as well as the influence of Acinetobacter species on immune responses in vitro and in vivo. METHODS: The skin microbiota of the study subjects was identified by using 16S rRNA sequencing. PBMCs were analyzed for baseline and allergen-stimulated mRNA expression. In in vitro assays human monocyte-derived dendritic cells and primary keratinocytes were incubated with Acinetobacter lwoffii. Finally, in in vivo experiments mice were injected intradermally with A lwoffii during the sensitization phase of the asthma protocol, followed by readout of inflammatory parameters. RESULTS: In healthy subjects, but not in atopic ones, the relative abundance of Acinetobacter species was associated with the expression of anti-inflammatory molecules by PBMCs. Moreover, healthy subjects exhibited a robust balance between anti-inflammatory and TH1/TH2 gene expression, which was related to the composition of the skin microbiota. In cell assays and in a mouse model, Acinetobacter species induced strong TH1 and anti-inflammatory responses by immune cells and skin cells and protected against allergic sensitization and lung inflammation through the skin. CONCLUSION: These results support the hypothesis that skin commensals play an important role in tuning the balance of TH1, TH2, and anti-inflammatory responses to environmental allergens.


Assuntos
Acinetobacter , Hipersensibilidade/imunologia , Leucócitos Mononucleares/imunologia , Microbiota , Pneumonia/imunologia , Pele/microbiologia , Acinetobacter/genética , Adolescente , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Citocinas/genética , Células Dendríticas , Perfilação da Expressão Gênica , Humanos , Queratinócitos , Leucócitos Mononucleares/metabolismo , Camundongos , Ovalbumina/imunologia , RNA Bacteriano/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética , Pele/imunologia , Células Th1/imunologia , Células Th2/imunologia
12.
Nutrients ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960223

RESUMO

Cancer cachexia (CC) is a multifactorial wasting syndrome characterized by a significant loss in lean and/or fat mass and represents a leading cause of mortality in cancer patients. Nutraceutical treatments have been proposed as a potential treatment strategy to mitigate cachexia-induced muscle wasting. However, contradictory findings warrant further investigation. The purpose of this study was to determine the effects of leucine supplementation on skeletal muscle in male and female ApcMin/+ mice (APC). APC mice and their wild-type (WT) littermates were given normal drinking water or 1.5% leucine-supplemented water (n = 4-10/group/sex). We measured the gene expression of regulators of inflammation, protein balance, and myogenesis. Leucine treatment lowered survival rates, body mass, and muscle mass in males, while in females, it had no effect on body or muscle mass. Leucine treatment altered inflammatory gene expression by lowering Il1b 87% in the APC group and decreasing Tnfa 92% in both WT and APC males, while it had no effect in females (p < 0.05). Leucine had no effect on regulators of protein balance and myogenesis in either sex. We demonstrated that leucine exacerbates moribundity in males and is not sufficient for mitigating muscle or fat loss during CC in either sex in the ApcMin/+ mouse.


Assuntos
Caquexia , Neoplasias Colorretais , Humanos , Camundongos , Masculino , Feminino , Animais , Caquexia/metabolismo , Leucina/farmacologia , Leucina/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Suplementos Nutricionais , Morbidade , Neoplasias Colorretais/complicações , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
13.
Nutrition ; 110: 112006, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972638

RESUMO

The effect of intermittent food restriction (IFR) on the Central Nervous System is unclear, especially when alternated with an obesity-inducing diet (DIO). This study aimed to evaluate key genes involved in energy-regulation imbalance in the hypothalamus after IFR and DIO alternation. Therefore, 45-d-old female Wistar rats were divided into 4 groups: standard control (ST-C), fed with an ad libitum standard diet; DIO control (DIO-C), fed with a DIO in the first and last 15 d of the intervention and a standard diet between the 16th and 45th day; standard restricted (ST-R), fed with a standard diet in the first and last 15 d of the intervention followed by IFR at 50% of the ST-C diet between the 16th and 45th day; and DIO restricted (DIO-R), fed with a DIO in the first and last 15 d of the intervention and subjected to IFR under the same conditions as the ST-R group. At 105 d of age, animals were euthanized, and the hypothalamus was removed for quantitative polymerase chain reaction analysis. The ST-R and DIO-R groups showed higher inhibitor of nuclear factor kappa-B kinase subunit beta (P < 0.001; P = 0.029) and nuclear factor kappa B (P < 0.001; P = 0.029) gene expression when compared with the ST-C group. The same held true for the JNK (P = 0.001; P = 0.003) and PPARα genes (both P < 0.001). Instead, the DIO-R group exhibited higher CCL5 gene expression than the ST-C (P = 0.001) and DIO-C (P < 0.001) groups, whereas all groups had higher SOCS3 gene expression than did the ST-C group. These data together suggest that IFR, whether combined with DIO or not, alters the expression of critical genes involved in energy regulation imbalance in the hypothalamus, which warrants caution and more research, because long-term usage might be hazardous.


Assuntos
Dieta , Obesidade , Ratos , Animais , Feminino , Ratos Wistar , Obesidade/genética , Obesidade/metabolismo , Hipotálamo/metabolismo , Alimentos
14.
J Food Biochem ; 46(12): e14474, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209491

RESUMO

The leaf and stem extracts of Boehmeria nivea (BN) collected from three different regions in Korea were screened for their antioxidant, neuroprotective, estrogenic, insulin secretion, and α-glucosidase inhibitory activity. We also examined whether BN extracts regulate cancer cell growth, inflammatory-related gene expression, and lipid accumulation in cellular system. Leaf extracts possessed greater antioxidant, anti-proliferative in cancer cells, neuroprotective, estrogenic activity, and inhibitory effect on pro-inflammatory gene expression than stem extracts. Leaf and stem extracts inhibited lipid accumulation in three T3-L1 adipocytes but did not affect glucose-stimulated insulin secretion in INS-1 cells. We isolated and identified the phytochemical constituents in the n-butanol and ethyl acetate fractions of BN leaves by combining silica gel column chromatography with mass spectrometry and 1 H- and 13 C-NMR analysis. The active compounds (caffeic acid, isoquercitrin, p-coumaric acid, and rutin) exhibited ABTS and DPPH radical scavenging activity, which may contribute to the biological activities of BN leaf extract. An analytical method was developed to quantify marker compounds for the discrimination of BN collected from different regions. Our results support the use of this analysis method for accurate identification and quantification of marker compounds in BN for the development of functional foods. PRACTICAL APPLICATIONS: Boehmeria nivea (BN) has been used as a raw material for the textile industry or traditional herbal medicine. The current study established the biological activities and active components of BN. Our results showed that BN leaf and stem extracts exhibit antioxidant, neuroprotective, and estrogenic activity. BN leaf extract also inhibited cancer cell growth, inflammatory mediators and cytokines production, and lipid accumulation in vitro. Moreover, the bioactive compounds, such as caffeic acid, isoquercitrin, p-coumaric acid, and rutin, exert ABTS and DPPH radical scavenging activities. Therefore, BN could potentially be a promising source of bioactive phytochemicals for the development of functional foods or drugs.


Assuntos
Antioxidantes , Boehmeria , Antioxidantes/farmacologia , Antioxidantes/química , Boehmeria/química , Rutina , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Lipídeos
15.
Heliyon ; 8(3): e09029, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284677

RESUMO

The functionally redundant ubiquitin E3 ligases SIAH1 and SIAH2 have been implicated in the regulation of metabolism and the hypoxic response, while their role in other signal-mediated processes such inflammatory gene expression remains to be defined. Here we have downregulated the expression of both SIAH proteins with specific siRNAs and investigated the functional consequences for IL-1α-induced gene expression. The knockdown of SIAH1/2 modulated the expression of approximately one third of IL-1α-regulated genes. These effects were not due to changes in the NF-κB and MAPK signaling pathways and rather employed further processes including those mediated by the coactivator p300. Most of the proteins encoded by SIAH1/2-regulated genes form a regulatory network of proinflammatory factors. Thus SIAH1/2 proteins function as variable rheostats that control the amplitude rather than the principal activation of the inflammatory gene response.

16.
Front Immunol ; 13: 993614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405730

RESUMO

Preclinical and clinical studies suggest that consumption of long chain omega-3 polyunsaturated fatty acids (PUFAs) reduces severity of chronic inflammatory and autoimmune diseases. While these ameliorative effects are conventionally associated with downregulated expression of proinflammatory cytokine and chemokine genes, our laboratory has recently identified Type 1 interferon (IFN1)-regulated gene expression to be another key target of omega-3 PUFAs. Here we used single cell RNA sequencing (scRNAseq) to gain new mechanistic perspectives on how the omega-3 PUFA docosahexaenoic acid (DHA) influences TLR4-driven proinflammatory and IFN1-regulated gene expression in a novel self-renewing murine fetal liver-derived macrophage (FLM) model. FLMs were cultured with 25 µM DHA or vehicle for 24 h, treated with modest concentration of LPS (20 ng/ml) for 1 and 4 h, and then subjected to scRNAseq using the 10X Chromium System. At 0 h (i.e., in the absence of LPS), DHA increased expression of genes associated with the NRF2 antioxidant response (e.g. Sqstm1, Hmox1, Chchd10) and metal homeostasis (e.g.Mt1, Mt2, Ftl1, Fth1), both of which are consistent with DHA-induced polarization of FLMs to a more anti-inflammatory phenotype. At 1 h post-LPS treatment, DHA inhibited LPS-induced cholesterol synthesis genes (e.g. Scd1, Scd2, Pmvk, Cyp51, Hmgcs1, and Fdps) which potentially could contribute to interference with TLR4-mediated inflammatory signaling. At 4 h post-LPS treatment, LPS-treated FLMs reflected a more robust inflammatory response including upregulation of proinflammatory cytokine (e.g. Il1a, Il1b, Tnf) and chemokine (e.g.Ccl2, Ccl3, Ccl4, Ccl7) genes as well as IFN1-regulated genes (e.g. Irf7, Mx1, Oasl1, Ifit1), many of which were suppressed by DHA. Using single-cell regulatory network inference and clustering (SCENIC) to identify gene expression networks, we found DHA modestly downregulated LPS-induced expression of NF-κB-target genes. Importantly, LPS induced a subset of FLMs simultaneously expressing NF-κB- and IRF7/STAT1/STAT2-target genes that were conspicuously absent in DHA-pretreated FLMs. Thus, DHA potently targeted both the NF-κB and the IFN1 responses. Altogether, scRNAseq generated a valuable dataset that provides new insights into multiple overlapping mechanisms by which DHA may transcriptionally or post-transcriptionally regulate LPS-induced proinflammatory and IFN1-driven responses in macrophages.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Lipopolissacarídeos/farmacologia , Interferons/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Receptor 4 Toll-Like/metabolismo , Macrófagos , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Expressão Gênica
17.
Front Pharmacol ; 13: 833066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620289

RESUMO

Microglia-associated inflammation and miRNA dysregulation are key players in Alzheimer's disease (AD) pathophysiology. Previously, we showed miR-124 upregulation in APP Swedish SH-SY5Y (SWE) and PSEN1 iPSC-derived neurons and its propagation by the secretome (soluble and exosomal fractions). After modulation with miR-124 mimic/inhibitor, we identified common responsive mechanisms between such models. We also reported miR-124 colocalization with microglia in AD patient hippocampi. Herein, we determined how miR-124 modulation in SWE cells influences microglia polarized subtypes in the context of inflammation. We used a coculture system without cell-to-cell contact formed by miR-124 modulated SWE cells and human CHME3 microglia stimulated with interferon-gamma (IFNγ-MG), in which we assessed their adopted gene/miRNA profile and proteomic signature. The increase of miR-124 in SWE cells/secretome (soluble and exosomal) was mimicked in IFNγ-MG. Treatment of SWE cells with the miR-124 inhibitor led to RAGE overexpression and loss of neuronal viability, while the mimic caused RAGE/HMGB1 downregulation and prevented mitochondria membrane potential loss. When accessing the paracrine effects on microglia, SWE miR-124 inhibitor favored their IFNγ-induced inflammatory signature (upregulated RAGE/HMGB1/iNOS/IL-1ß; downregulated IL-10/ARG-1), while the mimic reduced microglia activation (downregulated TNF-α/iNOS) and deactivated extracellular MMP-2/MMP-9 levels. Microglia proteomics identified 113 responsive proteins to SWE miR-124 levels, including a subgroup of 17 proteins involved in immune function/inflammation and/or miR-124 targets. A total of 72 proteins were downregulated (e.g., MAP2K6) and 21 upregulated (e.g., PAWR) by the mimic, while the inhibitor also upregulated 21 proteins and downregulated 17 (e.g., TGFB1, PAWR, and EFEMP1). Other targets were associated with neurodevelopmental mechanisms, synaptic function, and vesicular trafficking. To examine the source of miR-124 variations in microglia, we silenced the RNase III endonuclease Dicer1 to block miRNA canonical biogenesis. Despite this suppression, the coculture with SWE cells/exosomes still raised microglial miR-124 levels, evidencing miR-124 transfer from neurons to microglia. This study is pioneer in elucidating that neuronal miR-124 reshapes microglia plasticity and in revealing the relevance of neuronal survival in mechanisms underlying inflammation in AD-associated neurodegeneration. These novel insights pave the way for the application of miRNA-based neuropharmacological strategies in AD whenever miRNA dysregulated levels are identified during patient stratification.

18.
J Nutr Sci Vitaminol (Tokyo) ; 67(6): 404-416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34980719

RESUMO

Sodium nitrite (NaNO2) is a widely used food additive. The present study compared the outcomes from intakes of dietary NaNO2 and a high-fat diet (HFD), and assessed their combined effects on inflammatory gene expression in the immune tissues of the mouse. In experiment I, mice were fed a standard low-fat diet (LFD) without or with NaNO2 (0.02 and 0.08%, w/w) for 11 wk. In experiment II, mice were fed an LFD without or with NaNO2 (0.02%) or HFD without or with NaNO2 (0.02%) for 11 wk. Inflammatory gene expression in the immune tissues was then measured. NaNO2 consumption and HFD feeding each resulted in increased splenic mRNAs for cell markers of neutrophils (Ngp, NE, Ly6g, Mpo) and eosinophils (Epo, Ear6), and an S100 family member (S100A8). In contrast, NaNO2 consumption and HFD feeding each resulted in decreased splenic mRNAs for cell markers of macrophages (Emr1, Itgax, CD68, CD206, Dectin-1, TLRs 4, 6, and 7), T- (CD3, CD4), NK- (CD56) and B-cells (CD20, CD40), pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IFN-γ, IL-18, IL-10, TGF-ß), interleukin receptor antagonists (IL1ra, IL6ra) and cell adhesion molecules (ICAM-1, VCAM-1). However, dietary NaNO2 combined with HFD feeding caused no further decrease in these transcript levels compared with dietary NaNO2 alone. These NaNO2- or HFD-induced modifications were less profound in the liver and abdominal adipose tissues than in the spleen. These findings indicate that dietary NaNO2 has similar modulatory effects to HFD feeding on splenic inflammatory genes.


Assuntos
Dieta Hiperlipídica , Sódio na Dieta , Animais , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Sódio , Nitrito de Sódio , Baço
19.
Arthritis Res Ther ; 22(1): 208, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912331

RESUMO

OBJECTIVE: Predictive biomarkers of progression in knee osteoarthritis are sought to enable clinical trials of structure-modifying drugs. A peripheral blood leukocyte (PBL) inflammatory gene signature, MRI-based bone marrow lesions (BML) and meniscus extrusion scores, meniscal lesions, and osteophytes on X-ray each have been shown separately to predict radiographic joint space narrowing (JSN) in subjects with symptomatic knee osteoarthritis (SKOA). In these studies, we determined whether the combination of the PBL inflammatory gene expression and these imaging findings at baseline enhanced the prognostic value of either alone. METHODS: PBL inflammatory gene expression (increased mRNA for IL-1ß, TNFα, and COX-2), routine radiographs, and 3T knee MRI were assessed in two independent populations with SKOA: an NYU cohort and the Osteoarthritis Initiative (OAI). At baseline and 24 months, subjects underwent standardized fixed-flexion knee radiographs and knee MRI. Medial JSN (mJSN) was determined as the change in medial JSW. Progressors were defined by an mJSN cut-point (≥ 0.5 mm/24 months). Models were evaluated by odds ratios (OR) and area under the receiver operating characteristic curve (AUC). RESULTS: We validated our prior finding in these two independent (NYU and OAI) cohorts, individually and combined, that an inflammatory PBL inflammatory gene expression predicted radiographic progression of SKOA after adjustment for age, sex, and BMI. Similarly, the presence of baseline BML and meniscal lesions by MRI or semiquantitative osteophyte score on X-ray each predicted radiographic medial JSN at 24 months. The combination of the PBL inflammatory gene expression and medial BML increased the AUC from 0.66 (p = 0.004) to 0.75 (p < 0.0001) and the odds ratio from 6.31 to 19.10 (p < 0.0001) in the combined cohort of 473 subjects. The addition of osteophyte score to BML and PBL inflammatory gene expression further increased the predictive value of any single biomarker. A causal analysis demonstrated that the PBL inflammatory gene expression and BML independently influenced mJSN. CONCLUSION: The use of the PBL inflammatory gene expression together with imaging biomarkers as combinatorial predictive biomarkers, markedly enhances the identification of radiographic progressors. The identification of the SKOA population at risk for progression will help in the future design of disease-modifying OA drug trials and personalized medicine strategies.


Assuntos
Osteoartrite do Joelho , Biomarcadores , Progressão da Doença , Expressão Gênica , Humanos , Articulação do Joelho , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/genética
20.
Elife ; 82019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30900989

RESUMO

Neonatal inflammation is common and has lasting consequences for adult health. We investigated the lasting effects of a single bout of neonatal inflammation on adult respiratory control in the form of respiratory motor plasticity induced by acute intermittent hypoxia, which likely compensates and stabilizes breathing during injury or disease and has significant therapeutic potential. Lipopolysaccharide-induced inflammation at postnatal day four induced lasting impairments in two distinct pathways to adult respiratory plasticity in male and female rats. Despite a lack of adult pro-inflammatory gene expression or alterations in glial morphology, one mechanistic pathway to plasticity was restored by acute, adult anti-inflammatory treatment, suggesting ongoing inflammatory signaling after neonatal inflammation. An alternative pathway to plasticity was not restored by anti-inflammatory treatment, but was evoked by exogenous adenosine receptor agonism, suggesting upstream impairment, likely astrocytic-dependent. Thus, the respiratory control network is vulnerable to early-life inflammation, limiting respiratory compensation to adult disease or injury.


Assuntos
Adaptação Fisiológica , Doenças do Recém-Nascido , Inflamação/complicações , Respiração , Centro Respiratório/patologia , Animais , Animais Recém-Nascidos , Feminino , Humanos , Recém-Nascido , Inflamação/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Ratos Sprague-Dawley , Centro Respiratório/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA