Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.853
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 179-206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38166256

RESUMO

T cell responses must be balanced to ensure adequate protection against malignant transformation and an array of pathogens while also limiting damage to healthy cells and preventing autoimmunity. T cell exhaustion serves as a regulatory mechanism to limit the activity and effector function of T cells undergoing chronic antigen stimulation. Exhausted T cells exhibit poor proliferative potential; high inhibitory receptor expression; altered transcriptome, epigenome, and metabolism; and, most importantly, reduced effector function. While exhaustion helps to restrain damage caused by aberrant T cells in settings of autoimmune disease, it also limits the ability of cells to respond against persistent infection and cancer, leading to disease progression. Here we review the process of T cell exhaustion, detailing the key characteristics and drivers as well as highlighting our current understanding of the underlying transcriptional and epigenetic programming. We also discuss how exhaustion can be targeted to enhance T cell functionality in cancer.


Assuntos
Neoplasias , Linfócitos T , Humanos , Animais , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Epigênese Genética , Ativação Linfocitária/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Exaustão das Células T
2.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676822

RESUMO

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/fisiologia , Viroses/imunologia , Animais , Senescência Celular , Doença Crônica , Anergia Clonal , Epigênese Genética , Humanos , Neoplasias/terapia , Viroses/terapia
3.
Cell ; 187(7): 1785-1800.e16, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552614

RESUMO

To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.


Assuntos
Proteômica , Imagem Individual de Molécula , DNA , Microscopia de Fluorescência/métodos , Neurônios , Proteínas
4.
Cell ; 187(16): 4373-4388.e15, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121849

RESUMO

Relatlimab (rela; anti-LAG-3) plus nivolumab (nivo; anti-PD-1) is safe and effective for treatment of advanced melanoma. We designed a trial (NCT03743766) where advanced melanoma patients received rela, nivo, or rela+nivo to interrogate the immunologic mechanisms of rela+nivo. Analysis of biospecimens from this ongoing trial demonstrated that rela+nivo led to enhanced capacity for CD8+ T cell receptor signaling and altered CD8+ T cell differentiation, leading to heightened cytotoxicity despite the retention of an exhaustion profile. Co-expression of cytotoxic and exhaustion signatures was driven by PRDM1, BATF, ETV7, and TOX. Effector function was upregulated in clonally expanded CD8+ T cells that emerged after rela+nivo. A rela+nivo intratumoral CD8+ T cell signature was associated with a favorable prognosis. This intratumoral rela+nivo signature was validated in peripheral blood as an elevated frequency of CD38+TIM3+CD8+ T cells. Overall, we demonstrated that cytotoxicity can be enhanced despite the retention of exhaustion signatures, which will inform future therapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos , Proteína do Gene 3 de Ativação de Linfócitos , Melanoma , Receptor de Morte Celular Programada 1 , Humanos , Antígenos CD/metabolismo , Antígenos CD/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Citotoxicidade Imunológica , Proteínas de Grupo de Alta Mobilidade , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Proteína do Gene 3 de Ativação de Linfócitos/antagonistas & inibidores , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/genética , Nivolumabe/uso terapêutico , Nivolumabe/farmacologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Transdução de Sinais
5.
Cell ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357522

RESUMO

Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.

6.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774677

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Idoso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo
7.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
8.
Cell ; 185(2): 311-327.e24, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063073

RESUMO

The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.


Assuntos
Visão Ocular , Córtex Visual/citologia , Córtex Visual/embriologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ácido Glutâmico/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , RNA-Seq , Transcriptoma/genética , Visão Binocular/genética , Ácido gama-Aminobutírico/metabolismo
9.
Cell ; 185(21): 3877-3895.e21, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36152627

RESUMO

Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.


Assuntos
Córtex Auditivo/fisiologia , Síndrome de Williams/fisiopatologia , Animais , Córtex Auditivo/citologia , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Fenótipo , Transativadores/genética , Síndrome de Williams/genética
10.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216674

RESUMO

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Assuntos
Neocórtex , Animais , Camundongos , Microscopia Eletrônica , Neocórtex/fisiologia , Organelas , Células Piramidais/fisiologia , Sinapses/fisiologia
11.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34233165

RESUMO

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Assuntos
Microglia/metabolismo , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Parvalbuminas/metabolismo , Fenótipo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Transcrição Gênica
12.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31981491

RESUMO

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Assuntos
Transtorno Autístico/genética , Córtex Cerebral/crescimento & desenvolvimento , Sequenciamento do Exoma/métodos , Regulação da Expressão Gênica no Desenvolvimento , Neurobiologia/métodos , Estudos de Casos e Controles , Linhagem da Célula , Estudos de Coortes , Exoma , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fenótipo , Fatores Sexuais , Análise de Célula Única/métodos
13.
Cell ; 180(3): 521-535.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978320

RESUMO

Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.


Assuntos
Eletrofisiologia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Imagem Óptica/métodos , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Potenciais Sinápticos/fisiologia , Vibrissas/fisiologia
14.
Cell ; 175(7): 1731-1743.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30503213

RESUMO

Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Escamosas , Cetuximab/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Imunoterapia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Ensaios Clínicos Fase II como Assunto , Humanos , Células Matadoras Naturais/patologia , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia
15.
Cell ; 174(3): 521-535.e13, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033363

RESUMO

Many human spinal cord injuries are anatomically incomplete but exhibit complete paralysis. It is unknown why spared axons fail to mediate functional recovery in these cases. To investigate this, we undertook a small-molecule screen in mice with staggered bilateral hemisections in which the lumbar spinal cord is deprived of all direct brain-derived innervation, but dormant relay circuits remain. We discovered that a KCC2 agonist restored stepping ability, which could be mimicked by selective expression of KCC2, or hyperpolarizing DREADDs, in the inhibitory interneurons between and around the staggered spinal lesions. Mechanistically, these treatments transformed this injury-induced dysfunctional spinal circuit to a functional state, facilitating the relay of brain-derived commands toward the lumbar spinal cord. Thus, our results identify spinal inhibitory interneurons as a roadblock limiting the integration of descending inputs into relay circuits after injury and suggest KCC2 agonists as promising treatments for promoting functional recovery after spinal cord injury.


Assuntos
Traumatismos da Medula Espinal/tratamento farmacológico , Simportadores/agonistas , Simportadores/metabolismo , Animais , Axônios , Regulação da Expressão Gênica/genética , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/genética , Neurônios/metabolismo , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Medula Espinal , Simportadores/uso terapêutico , Cotransportadores de K e Cl-
16.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172591

RESUMO

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Assuntos
Histonas , Proteínas Serina-Treonina Quinases , Humanos , Histonas/genética , Histonas/metabolismo , Acetilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Citocinas/metabolismo , Inflamação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Immunity ; 54(6): 1231-1244.e4, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887202

RESUMO

The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. VIDEO ABSTRACT.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Útero/imunologia , Animais , Feminino , Estudo de Associação Genômica Ampla/métodos , Antígenos HLA/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placenta/imunologia , Gravidez , Resultado da Gravidez
18.
EMBO J ; 43(1): 14-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177313

RESUMO

Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.


Assuntos
Cálcio , Trocador de Sódio e Cálcio , Humanos , Compostos de Anilina/farmacologia , Cálcio/metabolismo , Éteres Fenílicos/farmacologia , Trocador de Sódio e Cálcio/química
19.
Genes Dev ; 34(9-10): 621-636, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241803

RESUMO

Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal Although these mutants survive postnatally, at ∼3-5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.


Assuntos
Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Prurido/genética , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas , Elementos Facilitadores Genéticos/genética , Camundongos , Mutação , Neurônios/citologia , Medula Espinal , Fatores de Transcrição/metabolismo
20.
Trends Immunol ; 45(3): 177-187, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433029

RESUMO

The MHC-I antigen presentation (AP) pathway is key to shaping mammalian CD8+ T cell immunity, with its aberrant expression closely linked to low tumor immunogenicity and immunotherapy resistance. While significant attention has been given to genetic mutations and downregulation of positive regulators that are essential for MHC-I AP, there is a growing interest in understanding how tumors actively evade MHC-I expression and/or AP through the induction of MHC-I inhibitory pathways. This emerging field of study may offer more viable therapeutic targets for future cancer immunotherapy. Here, we explore potential mechanisms by which cancer cells evade MHC-I AP and function and propose therapeutic strategies that might target these MHC-I inhibitors to restore impaired T cell immunity within the tumor microenvironment (TME).


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Animais , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Antígenos de Neoplasias , Mamíferos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA