Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 166(4): 522-538, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35574713

RESUMO

The role of CD39 pathway in Th1 cell function in tuberculosis (TB) is rarely elucidated. The present study aims to investigate the modulating mechanism of CD39 pathway during Mycobacterium tuberculosis (MTB) infection. CD39 expression was examined on host immune cells among patients with TB. The relationship between CD39 expression and Th1 cell function was analysed. Patients with TB displayed dramatically higher CD39 expression on Th1 cells than healthy controls, and a significantly increased expression of surface markers, including activation, exhaustion and apoptosis markers, were noted in CD39+ Th1 cells in comparison with CD39- Th1 cells. Conversely, CD39 expression on Th1 cells was associated with diminished number of polyfunctional cells producing Th1-type cytokines, and CD39+ Th1 cells showed obviously lower proliferation potential. Notably, tetramer analysis demonstrated a predominant CD39 expression on TB-specific CD4+ cells, which was associated with higher apoptosis and lower cytokine-producing ability. Transcriptome sequencing identified 27 genes that were differentially expressed between CD39+ and CD39- Th1 cells, such as IL32, DUSP4 and RGS1. Inhibition of CD39 pathway could enhance the activation, proliferation and cytokine-producing ability of Th1 cells. Furthermore, there was a significantly negative correlation between CD39 expression on Th1 cells and nutritional status indicators such as lymphocyte count and albumin levels, and we observed a significant decline in CD39 expression on Th1 cells after anti-TB treatment. CD39 is predominantly expressed on TB-specific Th1 cells and correlated with their exhausted function, which suggests that CD39 could serve as a prominent target for TB therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Apirase/metabolismo , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Humanos , Células Th1
2.
Curr Mol Med ; 20(4): 299-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31663468

RESUMO

BACKGROUND: Previously, we first identified the human tripartite motifcontaining protein 45 (TRIM45) acts as a novel transcriptional repressor in mitogenactivated protein kinase (MAPK) signaling pathway. After that, the inhibitory role of TRIM45 in the development of tumor was gradually unveiled. However, the function of TRIM45 in the tumorigenesis of lung cancer has not been characterized. METHODS AND RESULTS: In this study, we found that TRIM45 was up-regulated in earlystage human non-small-cell lung cancer (NSCLC) tissues. Overexpression of TRIM45 in lung cancer cells induces G1 arrest and promotes apoptosis, which accompanied by upregulated expression of RB, p16, p53, p27Kip1, and Caspase3 and down-regulated expression of CyclinE1 and CyclinE2. Further detection of the expression of the molecules in the MAPK signaling pathway revealed that overexpression of TRIM45 in lung cancer cells promotes phosphorylated p38 (p-p38) activation and inhibits phosphorylated ERK (p-ERK) activation. In accordance with this, p-p38 is increased while p-ERK is decreased in lung cancer tissues. CONCLUSION: These findings indicate that TRIM45 plays an inhibitory role in the tumorigenesis of lung cancer. High-level expression of TRIM45 in lung cancer tissue may promote cell apoptosis by activating p38 signal and inhibit proliferation by down-regulating p-ERK, which provides a new clue for understanding the tumorigenesis of lung cancer.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Células A549 , Apoptose/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA