Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Small ; : e2311380, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721961

RESUMO

Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection. The nanoarray is synthesized by manipulating monomer supersaturation during iCVD to induce controlled nucleation and preferential vertical growth of fluorinated polymer. Subsequent selective vapor deposition of a conformal hydrogel nanolayer results in superhydrophilic nanoarray floor and walls within the microchannel that provide a large capillary force and a superhydrophobic ceiling that drastically reduces flow friction, enabling rapid sweat transport along varied flow directions. A carbon/hydrogel/enzyme nanocomposite electrode is then fabricated by sequential deposition of highly porous carbon nanoparticles and hydrogel nanocoating to achieve sensitive and stable sweat detection. Further encapsulation of the assembled sweatsensing patch with superhydrophobic nanoarray imparts self-cleaning and water-proof capability. Finally, the sweat sensing patch demonstrates selective and sensitive glucose and lactate detection during the on-body test.

2.
Small ; 20(30): e2312283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409517

RESUMO

An ion-based synaptic transistor (synaptor) is designed to emulate a biological synapse using controlled ion movements. However, developing a solid-state electrolyte that can facilitate ion movement while achieving large-scale integration remains challenging. Here, a bio-inspired organic synaptor (BioSyn) with an in situ ion-doped polyelectrolyte (i-IDOPE) is demonstrated. At the molecular scale, a polyelectrolyte containing the tert-amine cation, inspired by the neurotransmitter acetylcholine is synthesized using initiated chemical vapor deposition (iCVD) with in situ doping, a one-step vapor-phase deposition used to fabricate solid-state electrolytes. This method results in an ultrathin, but highly uniform and conformal solid-state electrolyte layer compatible with large-scale integration, a form that is not previously attainable. At a synapse scale, synapse functionality is replicated, including short-term and long-term synaptic plasticity (STSP and LTSP), along with a transformation from STSP to LTSP regulated by pre-synaptic voltage spikes. On a system scale, a reflex in a peripheral nervous system is mimicked by mounting the BioSyns on various substrates such as rigid glass, flexible polyethylene naphthalate, and stretchable poly(styrene-ethylene-butylene-styrene) for a decentralized processing unit. Finally, a classification accuracy of 90.6% is achieved through semi-empirical simulations of MNIST pattern recognition, incorporating the measured LTSP characteristics from the BioSyns.

3.
Nanotechnology ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082380

RESUMO

Gallium oxide (Ga2O3) is attracting attention as a next-generation semiconductor material for power device because it has a wide energy band gap and high breakdown electric field. We deposited a Sn polymer, poly-tetraallyl tin (pTASn), on Ga2O3 samples using a disclosed chemical vapor deposition (iCVD) process. The Sn dopant of the Sn polymer layer is injected into the Ga2O3 through a heat treatment process. Diffusion model of Sn into the Ga2O3 is proposed through secondary ion mass spectroscopy (SIMS) analysis and bond dissociation energy. The fabricated device exhibited typical n-type FET behavior. Ga2O3 Sn-doping technology using iCVD will be applied to 3D structures and trench structures in the future, opening up many possibilities in the Ga2O3-based power semiconductor device manufacturing process.

4.
Macromol Rapid Commun ; : e2400111, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749490

RESUMO

Today, humidity sensors have become an integral part of the daily lives. In particular, humidity sensors using an electronic measuring principle have become the standard. Although these sensors have proven to be a stable measurement method, they have some disadvantages, such as their long response time or the danger of using them in explosive environments. This work introduces photonic crystals as an alternative optical measurement approach. The novel technology of ultra-fast two-photon polymerisation printing is combined with a thin-film deposition process, namely iCVD. This allows to print large area high-precision 3D templates, which are subsequently coated with a humidity responsive hydrogel thin film (p(HEMA) of 20 nm.The limits of 2PP technology are being pushed allowing the production ofs table and periodic large-area 3D structures. The flexible customization of hydrogels for ambient conditions make them exceptionally promising for a wide range of sensing applications. Additionally, optical methods for measuring humidity seem to be an excellent alternative to overcome the limitations for current state of the art humidity sensors. The optical detection of changes in ambient air humidity is achieved by observing color changes of the printed structure within the visible wavelength range.

5.
Small ; 19(10): e2206090, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541730

RESUMO

Thin film encapsulation (TFE) is an essential component to ensure reliable operation of environmentally susceptible organic light-emitting diode-based display. In order to integrate defect-free TFE on display with complex surface structures, additional planarization layer is imperative to planarize the surface topography. The thickness of conventional planarization layer is as high as tens of µm, but the thickness must be reduced substantially to minimize the light leakage in smaller devices such as micro light-emitting diodes. In this study, a thin-less than 2 µm-planarization is achieved via solvent-free process, initiated chemical vapor deposition (iCVD). By adapting copolymer from two soft, but curable monomers, glycidyl acrylate (GA) and 2-(dimethylamino)ethyl methacrylate, excellent planarization performance is achieved on various nano-grating patterns. With only 1.5 µm-thick iCVD planarization layer, a 600 nm-deep trench polyurethane acrylate pattern is flattened completely. The TFE fabricated on planarized pattern exhibits excellent barrier property as fabricated on flat glass substrate, which strongly suggests that iCVD planarization layer can serve as a promising planarization layer to fabricate TFE on various types of complicated device surfaces.

6.
Small ; 18(17): e2106648, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297560

RESUMO

Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.


Assuntos
Células Dendríticas , Polímeros , Apresentação de Antígeno , Técnicas de Cultura de Células/métodos , Células Dendríticas/metabolismo , Ativação Linfocitária , Polímeros/metabolismo
7.
Nanotechnology ; 32(43)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34265750

RESUMO

The interest in patterned polyvinylidene fluoride (PVDF) surfaces has grown significantly in the recent years due to ability to control the ferroelectric behavior through the size and shape of the surface structures. However, forming micron sized structures on the PVDF surface generally requires laborious lithography based methods or use of templates which complicates the process. In this study, we report spontaneous formation of microislands with ferroelectric response during PVDF growth via initiated chemical vapor deposition. Depositions performed under continuous and no flow conditions show that laminar precursor flow to the surface yield homogenous thin films, whereas no flow conditions of the batch mode result in the growth of surface protrusions (microislands) with higher polar phase content. Formation of these surface instabilities after an incubation time indicates the presence of local stress fields building with time, resulting in formation of the islands with higherßphase fraction to release the stress. Furthermore, the increased mobility of the polymer chains at high temperatures reduces the stress field, leading to lowerß/αphase ratios in smaller microislands.

8.
Chem Eng J ; 418: 129368, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33746567

RESUMO

The ongoing pandemic caused by the novel coronavirus has turned out to be one of the biggest threats to the world, and the increase of drug-resistant bacterial strains also threatens the human health. Hence, there is an urgent need to develop novel anti-infective materials with broad-spectrum anti-pathogenic activity. In the present study, a fluorinated polycationic coating was synthesized on a hydrophilic and negatively charged polyester textile via one-step initiated chemical vapor deposition of poly(dimethyl amino methyl styrene-co-1H,1H,2H,2H-perfluorodecyl acrylate) (P(DMAMS-co-PFDA), PDP). The surface characterization results of SEM, FTIR, and EDX demonstrated the successful synthesis of PDP coating. Contact angle analysis revealed that PDP coating endowed the polyester textile with the hydrophobicity against the attachment of different aqueous foulants such as blood, coffee, and milk, as well as the oleophobicity against paraffin oil. Zeta potential analysis demonstrated that the PDP coating enabled a transformation of negative charge to positive charge on the surface of polyester textile. The PDP coating exhibited excellent contact-killing activity against both gram-negative Escherichia coli and gram-positive methicillin-resistant Staphylococcus aureus, with the killing efficiency of approximate 99.9%. In addition, the antiviral capacity of PDP was determined by a green fluorescence protein (GFP) expression-based method using lentivirus-EGFP as a virus model. The PDP coating inactivated the negatively charged lentivirus-EGFP effectively. Moreover, the coating showed good biocompatibility toward mouse NIH 3T3 fibroblast cells. All the above properties demonstrated that PDP would be a promising anti-pathogenic polymeric coating with wide applications in medicine, hygiene, hospital, etc., to control the bacterial and viral transmission and infection.

9.
Biotechnol Bioprocess Eng ; 26(2): 165-178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33821132

RESUMO

For last two decades, the demand for precisely engineered three-dimensional structures has increased continuously for the developments of biomaterials. With the recent advances in micro- and nano-fabrication techniques, various devices with complex surface geometries have been devised and produced in the pharmaceutical and medical fields for various biomedical applications including drug delivery and biosensors. These advanced biomaterials have been designed to mimic the natural environments of tissues more closely and to enhance the performance for their corresponding biomedical applications. One of the important aspects in the rational design of biomaterials is how to configure the surface of the biomedical devices for better control of the chemical and physical properties of the bioactive surfaces without compromising their bulk characteristics. In this viewpoint, it of critical importance to secure a versatile method to modify the surface of various biomedical devices. Recently, a vapor phase method, termed initiated chemical vapor deposition (iCVD) has emerged as damage-free method highly beneficial for the conformal deposition of various functional polymer films onto many kinds of micro- and nano-structured surfaces without restrictions on the substrate material or geometry, which is not trivial to achieve by conventional solution-based surface functionalization methods. With proper structural design, the functional polymer thin film via iCVD can impart required functionality to the biomaterial surfaces while maintaining the fine structure thereon. We believe the iCVD technique can be not only a valuable approach towards fundamental cell-material studies, but also of great importance as a platform technology to extend to other prospective biomaterial designs and material interface modifications for biomedical applications.

10.
Macromol Rapid Commun ; 41(14): e2000200, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32519398

RESUMO

The integration of porous thin films using microelectronic compatible processes sometimes requires the protection of the interior of the pores during the critical integration steps. In this paper, the polymerization of neo-pentyl methacrylate (npMA) is performed via initiated chemical vapor deposition (iCVD) on a porous organosilicate (SiOCH) and on a dense SiOCH. The characterizations by Fourier-transform infrared spectroscopy, spectroscopic ellipsometry, and time-of-flight secondary ion mass spectrometry of the different stacks show that iCVD is a powerful technique to polymerize npMA in the nanometric pores and thus totally fill them with a polymer. The study of the pore filling for very short iCVD durations shows that the polymerization in the pores is complete in less than ten seconds and is uniform in depth. Then, the poly(npMA) film growth continues on top of the filled SiOCH layer. These characteristics make iCVD a straightforward and very promising alternative to other infiltration techniques in order to fill the porosity of microporous thin films.


Assuntos
Gases , Polímeros , Polimerização , Porosidade
11.
Macromol Rapid Commun ; 41(4): e1900514, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31958190

RESUMO

Despite their capability, sub-10 nm periodic nano-patterns formed by strongly segregating block copolymer (BCP) thin films cannot be easily oriented perpendicular to the substrate due to the huge surface energy differences of the constituent blocks. To produce perpendicular nano-patterns, the interfacial energies of both the substrate and free interfaces should be controlled precisely to induce non-preferential wetting. Unfortunately, high-performance surface modification layers are challenging to design, and different kinds of surface modification methods must be devised respectively for each neutral layer and top coat. Furthermore, conventional approaches, largely based on spin-coating processes, are highly prone to defect formation and may readily cause dewetting at sub-10 nm thickness. To date, these obstacles have hampered the development of high-fidelity, sub-5 nm BCP patterns. Herein, an all-vapor phase deposition approach initiated chemical vapor deposition is demonstrated to form 9-nm-thick, uniform neutral bottom layer and top coat with exquisite control of composition and thickness. These layers are employed in BCP films to produce perpendicular cylinders with a diameter of ≈4 nm that propagate throughout a BCP thickness of up to ≈60 nm, corresponding to five natural domain spacings of the BCP. Such a robust approach will serve as an advancement for the reliable generation of sub-10 nm nano-patterns.


Assuntos
Nanoestruturas/química , Polímeros/química , Teste de Materiais , Metacrilatos/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polímeros/síntese química , Poliestirenos/química , Propriedades de Superfície
12.
Small ; 14(9)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251418

RESUMO

A high-performance top-gated graphene field-effect transistor (FET) with excellent mechanical flexibility is demonstrated by implementing a surface-energy-engineered copolymer gate dielectric via a solvent-free process called initiated chemical vapor deposition. The ultrathin, flexible copolymer dielectric is synthesized from two monomers composed of 1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane and 1-vinylimidazole (VIDZ). The copolymer dielectric enables the graphene device to exhibit excellent dielectric performance and substantially enhanced mechanical flexibility. The p-doping level of the graphene can be tuned by varying the polar VIDZ fraction in the copolymer dielectric, and the Dirac voltage (VDirac ) of the graphene FET can thus be systematically controlled. In particular, the VDirac approaches neutrality with higher VIDZ concentrations in the copolymer dielectric, which minimizes the carrier scattering and thereby improves the charge transport of the graphene device. As a result, the graphene FET with 20 nm thick copolymer dielectrics exhibits field-effect hole and electron mobility values of over 7200 and 3800 cm2 V-1 s-1 , respectively, at room temperature. These electrical characteristics remain unchanged even at the 1 mm bending radius, corresponding to a tensile strain of 1.28%. The formed gate stack with the copolymer gate dielectric is further investigated for high-frequency flexible device applications.

13.
Proc Natl Acad Sci U S A ; 112(50): 15426-31, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621717

RESUMO

In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Papel , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos/química , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/transplante , Força Compressiva , Ácido Glucurônico/química , Células HeLa , Ácidos Hexurônicos/química , Humanos , Maleatos/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Peso Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Poliestirenos/química , Coelhos , Espectrometria por Raios X , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
14.
Nano Lett ; 17(10): 6443-6452, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892637

RESUMO

Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

15.
Macromol Rapid Commun ; 37(5): 446-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785633

RESUMO

A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Polímeros/síntese química , Siloxanas/síntese química , Cátions Monovalentes , Condutividade Elétrica , Teste de Materiais , Transição de Fase , Polimerização , Temperatura , Volatilização
16.
ACS Appl Mater Interfaces ; 16(24): 31624-31635, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38839601

RESUMO

In microelectronics, one of the main 3D integration strategies consists of vertically stacking and electrically connecting various functional chips using through-silicon vias (TSVs). For the fabrication of the TSVs, one of the challenges is to conformally deposit a low dielectric constant insulator thin film at the surface of the silicon. To date, there is no universal technique that can address all types of TSV integration schemes, especially in the case requiring a low deposition temperature. In this work, an organosilicate polymer deposited by initiated chemical vapor deposition (iCVD) was developed and integrated as an insulating layer for TSVs. Process studies have shown that poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (P(V3D3)) can present good conformality on high aspect ratio features by increasing the substrate temperature up to 100 °C. The trade-off is a moderate deposition rate. The thermal stability of the polymer has been investigated, and we show that a thermal annealing at 400 °C (with or without ultraviolet exposure) allows the stabilization of the dielectric films by removing residual oligomers. Then, P(V3D3) was integrated in high aspect ratio TSV (10 × 100 µm) on 300 mm silicon wafers using a standard integration flow for TSV metallization. Functional devices were successfully fabricated (including daisy chains of 754 TSVs) and electrically characterized. Our work shows that the metallization barrier should be carefully selected to eliminate the appearance of voids at the top corner of the TSV after the Cu annealing step. Moreover, an appropriate integration process should be used to avoid the appearance of cohesive cracks in the liner. This work constitutes a first proof of concept of the use of an iCVD polymer in a quasi-industrial microelectronic environment. It also highlights the benefit of iCVD as a promising technique to deposit conformal dielectric thin films in a microelectronic pilot line environment.

17.
Adv Sci (Weinh) ; 11(23): e2308847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566434

RESUMO

Electrolyte-gated synaptic transistors (EGSTs) have attracted considerable attention as synaptic devices owing to their adjustable conductance, low power consumption, and multi-state storage capabilities. To demonstrate high-density EGST arrays, 2D materials are recommended owing to their excellent electrical properties and ultrathin profile. However, widespread implementation of 2D-based EGSTs has challenges in achieving large-area channel growth and finding compatible nanoscale solid electrolytes. This study demonstrates large-scale process-compatible, all-solid-state EGSTs utilizing molybdenum disulfide (MoS2) channels grown through chemical vapor deposition (CVD) and sub-30 nm organic-inorganic hybrid electrolyte polymers synthesized via initiated chemical vapor deposition (iCVD). The iCVD technique enables precise modulation of the hydroxyl group density in the hybrid matrix, allowing the modulation of proton conduction, resulting in adjustable synaptic performance. By leveraging the tunable iCVD-based hybrid electrolyte, the fabricated EGSTs achieve remarkable attributes: a wide on/off ratio of 109, state retention exceeding 103, and linear conductance updates. Additionally, the device exhibits endurance surpassing 5 × 104 cycles, while maintaining a low energy consumption of 200 fJ/spike. To evaluate the practicality of these EGSTs, a subset of devices is employed in system-level simulations of MNIST handwritten digit recognition, yielding a recognition rate of 93.2%.

18.
Bioact Mater ; 34: 401-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282966

RESUMO

In vitro vascularized cancer models utilizing microfluidics have emerged as a promising tool for mechanism study and drug screening. However, the lack of consideration and preparation methods for cancer cellular sources that are capable of adequately replicating the metastatic features of circulating tumor cells contributed to low relevancy with in vivo experimental results. Here, we show that the properties of cancer cellular sources have a considerable impact on the validity of the in vitro metastasis model. Notably, with a hydrophobic surface, we can create highly metastatic spheroids equipped with aggressive invasion, endothelium adhesion capabilities, and activated metabolic features. Combining these metastatic spheroids with the well-constructed microfluidic-based extravasation model, we validate that these metastatic spheroids exhibited a distinct extravasation response to epidermal growth factor (EGF) and normal human lung fibroblasts compared to the 2D cultured cancer cells, which is consistent with the previously reported results of in vivo experiments. Furthermore, the applicability of the developed model as a therapeutic screening platform for cancer extravasation is validated through profiling and inhibition of cytokines. We believe this model incorporating hydrophobic surface-cultured 3D cancer cells provides reliable experimental data in a clear and concise manner, bridging the gap between the conventional in vitro models and in vivo experiments.

19.
Adv Mater ; : e2403952, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015054

RESUMO

Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.

20.
Macromol Rapid Commun ; 34(22): 1755-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24123386

RESUMO

A template-free method is described to fabricate continuous-phase, porous polymer films by simultaneous phase separation during vapor deposition polymerization. The technique involves concurrent polymerization, crosslinking, and phase separation of condensed species and reaction products. Deposited films form open-cell, macroporous structures consisting of crosslinked and glassy poly(glycidyl methacrylate). By limiting phase separation during vapor phase deposition, spatially dependent morphologies, such as layered morphologies, can be grown. Results show that combining vapor deposition polymerization with phase separation establishes morphological control, which may be applied to applications including cellular scaffolds, thin cushions and vibration dampers, and membranes for separations.


Assuntos
Polímeros/química , Gases/química , Polimerização , Ácidos Polimetacrílicos/química , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA