Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400394, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819993

RESUMO

Hybrid organic-inorganic metal halide perovskites (HOIPs) are promising materials for optoelectronics applications. Their optical and electrical properties can be controlled by strain engineering, that results from application of local elastic deformation or deposition on pre-patterned substrates acquiring a conformal 3D shape. Most interesting, their mechanical properties depend on their crystal structure, composition and dimensionality. We explore by numerical simulations the deformation of a selection of HOIPs comprising a broad range of elastic properties. We consider an axial symmetry with the formation of microdomes on flakes. Radial and vertical forces are considered, finding that the radial force is more effective to obtain large deformation. Large vertical displacement and strain is obtained for HOIPs with low stiffness. The layered nature of HOIPs, that are formed by inorganic layers of different thickness and organic spacers, is also investigated, revealing a non-monotonous trend with the proportion of inorganic to organic part.

2.
ACS Nano ; 18(26): 16994-17006, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898819

RESUMO

The desire to commercialize perovskite solar cells continues to mount, motivating the development of scalable production. Evaluations of the impact of open-air processing have revealed a variety of physical changes in the fabricated devices─with few changes having the capacity to be functionalized. Here, we highlight the beneficial role of ambient oxygen during the open-air thermal processing of metastable γ-CsPbI3-based perovskite thin films and devices. Physiochemical-sensitive probes elucidate oxygen intercalation and the formation of Pb-O bonds in the CsPbI3 crystal, entering via iodine vacancies at the surface, creating superoxide (O2-) through electron transfer reactions with molecular oxygen, which drives the formation of a zero-dimensional Cs4PbI6 capping layer during annealing (>330 °C). The chemical conversion permanently alters the film structure, helping to shield the subsurface perovskite from moisture and introduces lattice anchoring sites, stabilizing otherwise unstable γ-CsPbI3 films. This functional modification is demonstrated in γ-CsPbI2Br perovskite solar cells, boosting the operational stability and photoconversion efficiency of champion devices from 12.7 to 15.4% when annealed in dry air. Such findings prompt a reconsideration of glovebox-based perovskite solar cell research and establish a scenario where device fabrication can in fact greatly benefit from ambient oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA