Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2305436120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459520

RESUMO

The feeding mechanisms of animals constrain the spectrum of resources that they can exploit profitably. For floral nectar eaters, both corolla depth and nectar properties have marked influence on foraging choices. We report the multiple strategies used by honey bees to efficiently extract nectar at the range of sugar concentrations and corolla depths they face in nature. Honey bees can collect nectar by dipping their hairy tongues or capillary loading when lapping it, or they can attach the tongue to the wall of long corollas and directly suck the nectar along the tongue sides. The honey bee feeding apparatus is unveiled as a multifunctional tool that can switch between lapping and sucking nectar according to the instantaneous ingesting efficiency, which is determined by the interplay of nectar-mouth distance and sugar concentration. These versatile feeding mechanisms allow honey bees to extract nectar efficiently from a wider range of floral resources than previously appreciated and endow them with remarkable adaptability to diverse foraging environments.


Assuntos
Boca , Néctar de Plantas , Abelhas , Animais , Língua , Carboidratos , Açúcares
2.
Cell Tissue Res ; 379(2): 275-289, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31478139

RESUMO

In insects, pheromones are detected by olfactory sensory neurons (OSNs) of the antennae that co-express pheromone receptors (PRs) and the "sensory neuron membrane protein 1" (SNMP1). Beyond its relevance for pheromone detection via the antenna, little is known about a potential expression and functional role of SNMP1 in cells of other chemosensory appendages. Here, we report that in the desert locust Schistocerca gregaria, SNMP1 is also expressed in the labial and maxillary palps of the mouthparts. In the palps, the SNMP1-positive cells were situated next to the so-called terminal sensilla that are considered as chemosensory. Moreover, the SNMP1-positive cells of the palps expressed the "odorant receptor co-receptor" (Orco), a marker for OSNs endowed with odorant receptors (ORs), suggesting that these cells are olfactory. With respect to an olfactory function of the SNMP1-positive cells, further analyses examining a possible expression of ORs (notably putative PRs) in the labial and maxillary palps revealed that several members of a particular OR subfamily from S. gregaria, the b-OR group, are co-expressed with SNMP1 in cells of the palps. Interestingly, b-OR types co-expressed with SNMP1 in antennal OSNs were also co-expressed with SNMP1 in cells of the palps, indicating a specific pairing in the expression of SNMP1 and given ORs in both antennae and palps. The co-expression of SNMP1 and certain b-ORs that are regarded as candidate PRs opens up the possibility that chemosensory cells on the palps of the desert locust may contribute to pheromone detection.


Assuntos
Clima Desértico , Gafanhotos/metabolismo , Proteínas de Insetos/metabolismo , Maxila/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Regulação da Expressão Gênica , Gafanhotos/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética
3.
Arthropod Struct Dev ; 58: 100969, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32769052

RESUMO

The larvae of the black soldier fly (BSF) Hermetia illucens are increasingly being used for waste management purposes given their ability to grow on a wide range of organic decaying materials. Although significant efforts have been spent to improve the mass rearing of BSF larvae on specific substrates and their bioconversion capability, little is known about the biology of this insect, especially with regards to the digestive system. In this study, we analyzed the morphology of the head and buccal apparatus of H. illucens larvae by using optical and scanning electron microscopy, evaluating the different mouthparts and their modifications during larval development. Our analysis showed that the larval head of H. illucens presents similarities to those of campodeiform insect larvae, whereas the mandibular-maxillary complex represents a food intake solution typical of Stratiomyidae that enables BSF larvae to ingest semiliquid food. The mouthparts resemble a "tunnel boring machine", where the hypopharynx separates finer organic particles from coarser and inorganic ones.


Assuntos
Dípteros/anatomia & histologia , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/ultraestrutura , Cabeça/anatomia & histologia , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Boca/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA