RESUMO
Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has recently been identified as an important regulator of tumor progression and metastasis. This study discovered that LOXL2 expression in oral squamous cell carcinoma (OSCC) tissues was significantly associated with tumor clinical stage, lymph node metastasis and patients' overall survival time. LOXL2-overexpressing human buccal SCC TW2.6 (TW2.6/LOXL2) and hypopharyngeal SCC FaDu (FaDu/LOXL2) cells exhibited enhanced migration, invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes, independently of its enzymatic activity. Moreover, TW2.6/LOXL2 significantly increased tumor-initiating frequency in SCID mice. We further demonstrated that LOXL2 increased the levels of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and IFIT3 in TW2.6/LOXL2 and FaDu/LOXL2 cells. We also identified IFIT1 and IFIT3 as key downstream components of LOXL2 action in migration, invasion, EMT, and CSC phenotypes in TW2.6 and FaDu cells. Furthermore, a significant positive correlation between LOXL2 expression and IFIT1 and IFIT3 overexpression in human OSCC tissues was observed. In addition, TW2.6/LOXL2 and FaDu/LOXL2 cells were 3.3- to 3.6-fold more susceptible to the epidermal growth factor receptor (EGFR) inhibitor gefitinib than were their respective control cells. The antitumor effect of gefitinib on orthotopic TW2.6/LOXL2 xenograft tumor was fourfold higher than that on controls. Our results indicate that LOXL2 expression is a strong prognostic factor for OSCC and may be used as a marker to identify patients most likely to respond to EGFR-targeted therapy.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Humanos , Gefitinibe/farmacologia , Carcinoma de Células Escamosas/patologia , Proteína-Lisina 6-Oxidase , Camundongos SCID , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteínas de Ligação a RNA/genética , Receptores ErbB , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
AIM: Curing hepatitis B virus (HBV) infection requires elimination of covalently closed circular DNA (cccDNA). Interferon (IFN)-γ has noncytolytic antiviral potential; however, elimination of cccDNA could not be achieved. To enhance the regulatory effect, we comprehensively analyzed the host factors associated with cccDNA amplification and IFN-γ and IFN-α effects using an in vitro HBV infection system showing various transcription levels. METHODS: Primary human hepatocytes were infected with HBV using genomic plasmids carrying the basic core promoter mutation A1762T/G1764A and/or the precore mutation G1896A and treated with IFN-γ and IFN-α. Comprehensive and functional studies involving microarray and small interfering RNA analysis revealed the host factors related to cccDNA regulation. RESULTS: The HBV infection system reproduced the HBV life cycle and showed various propagation levels. Microarray analysis revealed 53 genes correlated with the cccDNA levels. Of the 53 genes, expression of IFN-induced protein 44-like (IFI44L) was significantly upregulated by IFN-γ and IFN-α. The anti-HBV effect of IFI44L is exerted regardless of IFN-γ or IFN-α by inhibiting the activation of nuclear factor-κB and signal transducer and activator of transcription 1 pathways. CONCLUSIONS: Using the in vitro HBV infection system, an IFN-inducible molecule, IFI44L, associated with cccDNA amplification, was identified. These results suggest an innovative molecular strategy for the regulation of HBV cccDNA by controlling a novel host factor, IFI44L.
RESUMO
BACKGROUND: It is a basic task in high-throughput gene expression profiling studies to identify differentially expressed genes (DEGs) between two phenotypes. RankComp, an algorithm, could analyze the highly stable within-sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue that are widely reversed in the cancer condition, thereby detecting DEGs for individual disease samples measured by a particular platform. METHODS: In the present study, Gene Expression Omnibus (GEO) Series (GSE) GSE75540, GSE138206 were downloaded from GEO, by analyzing DEGs in oral squamous cell carcinoma based on online datasets using the RankComp algorithm, using the Kaplan-Meier survival analysis and Cox regression analysis to survival analysis, Gene Set Enrichment Analysis (GSEA) to explore the potential molecular mechanisms underlying. RESULTS: We identified 6 reverse gene pairs with stable REOs. All the 12 genes in these 6 reverse gene pairs have been reported to be associated with cancers. Notably, lower Interferon Induced Protein 44 Like (IFI44L) expression was associated with poorer overall survival (OS) and Disease-free survival (DFS) in oral squamous cell carcinoma patients, and IFI44L expression showed satisfactory predictive efficiency by receiver operating characteristic (ROC) curve. Moreover, low IFI44L expression was identified as risk factors for oral squamous cell carcinoma patients' OS. IFI44L downregulation would lead to the activation of the FRS-mediated FGFR1, FGFR3, and downstream signaling pathways, and might play a role in the PI3K-FGFR cascades. CONCLUSIONS: Collectively, we identified 6 reverse gene pairs with stable REOs in oral squamous cell carcinoma, which might serve as gene signatures playing a role in the diagnosis in oral squamous cell carcinoma. Moreover, high expression of IFI44L, one of the DEGs in the 6 reverse gene pairs, might be associated with favorable prognosis in oral squamous cell carcinoma patients and serve as a tumor suppressor by acting on the FRS-mediated FGFR signaling.
Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Supressoras de Tumor , Regulação para Baixo/genética , Feminino , Humanos , Masculino , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/mortalidade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Transcriptoma/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
We describe a novel function for the interferon (IFN)-induced protein 44-like (IFI44L) gene in negatively modulating innate immune responses induced after virus infections. Furthermore, we show that decreasing IFI44L expression impairs virus production and that IFI44L expression negatively modulates the antiviral state induced by an analog of double-stranded RNA (dsRNA) or by IFN treatment. The mechanism likely involves the interaction of IFI44L with cellular FK506-binding protein 5 (FKBP5), which in turn interacts with kinases essential for type I and III IFN responses, such as inhibitor of nuclear factor kappa B (IκB) kinase alpha (IKKα), IKKß, and IKKε. Consequently, binding of IFI44L to FKBP5 decreased interferon regulatory factor 3 (IRF-3)-mediated and nuclear factor kappa-B (NF-κB) inhibitor (IκBα)-mediated phosphorylation by IKKε and IKKß, respectively. According to these results, IFI44L is a good target for treatment of diseases associated with excessive IFN levels and/or proinflammatory responses and for reduction of viral replication.IMPORTANCE Excessive innate immune responses can be deleterious for the host, and therefore, negative feedback is needed. Here, we describe a completely novel function for IFI44L in negatively modulating innate immune responses induced after virus infections. In addition, we show that decreasing IFI44L expression impairs virus production and that IFI44L expression negatively modulates the antiviral state induced by an analog of dsRNA or by IFN treatment. IFI44L binds to the cellular protein FKBP5, which in turn interacts with kinases essential for type I and III IFN induction and signaling, such as the kinases IKKα, IKKß, and IKKε. IFI44L binding to FKBP5 decreased the phosphorylation of IRF-3 and IκBα mediated by IKKε and IKKß, respectively, providing an explanation for the function of IFI44L in negatively modulating IFN responses. Therefore, IFI44L is a candidate target for reducing virus replication.
Assuntos
Quinase I-kappa B/metabolismo , Imunidade Inata/imunologia , Interferons/farmacologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral , Sequência de Aminoácidos , Antivirais/farmacologia , Retroalimentação Fisiológica , Humanos , Quinase I-kappa B/genética , Imunidade Inata/efeitos dos fármacos , Influenza Humana/imunologia , Influenza Humana/patologia , Influenza Humana/virologia , NF-kappa B , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/virologia , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/imunologia , Fosforilação , Homologia de Sequência , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genéticaRESUMO
Hepatitis E virus (HEV) induces interferons and regulates the induction of interferon-stimulated genes (ISGs) in the host cell. HEV infection has been shown to promote the expression of different ISGs, such as ISG15, IFIT1, MX1, RSAD2/Viperin and CxCL10, in cell culture and animal models. Interferon-induced protein with tetratricopeptide repeat 1 (IFIT1) is an ISG-encoded protein that inhibits the translation of viral RNA, having 5'-triphosphate or the mRNA lacking 2'-O-methylation on the 5'cap. In this study, we found that IFIT1 binds to HEV RNA to inhibit its translation. HEV replication is also restricted in hepatoma cells with overexpressed IFIT1. However, despite this binding of IFIT1 to HEV RNA, HEV successfully replicates in hepatoma cells in the infection scenario. In an effort to identify the underlying mechanism, we found that HEV RNA-dependent RNA polymerase (RdRp) binds to IFIT1, thereby protecting the viral RNA from IFIT1-mediated translation inhibition. RdRp sequesters IFIT1, resulting in the successful progression of viral replication in the infected cells. Thus, we discovered a distinct pro-viral role of HEV RdRp that is crucial for successful infection in the host, and propose a unique mechanism developed by HEV to overcome IFIT1-mediated host immune response.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Viral da Expressão Gênica , Vírus da Hepatite E/enzimologia , Hepatite E/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Hepatite E/genética , Hepatite E/virologia , Vírus da Hepatite E/genética , Interações Hospedeiro-Patógeno , Humanos , Biossíntese de Proteínas , RNA Viral/genética , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genéticaRESUMO
BACKGROUND: The objectives of this study were to compare the interferon-induced protein 44-like (IFI44L) promoter methylation level between systemic lupus erythematosus (SLE) patients and healthy controls and to evaluate its diagnostic value in SLE. MATERIALS AND METHODS: The IFI44L promoter methylation level was measured in 49 patients with SLE and 50 healthy controls. Quantitative analysis of promoter methylation IFI44L gene in genomic DNA samples extracted from peripheral blood mononuclear cells was examined in SLE patients and healthy controls. The level of DNA methylation was compared between SLE patients and healthy controls as well as within SLE patient groups based on the presence of renal involvement. Moreover, diagnostic values of IFI44L were calculated. RESULTS: The IFI44L promoter methylation level in SLE patients was significantly lower than healthy controls (median, 43.8 vs. 57, respectively; P = 0.008). The level of IFI44L promoter methylation was not significantly different between SLE patients with renal involvement and SLE patients without renal involvement (84.6% vs. 92.7%, respectively; P = 0.774). The IFI44L promoter methylation level ≤94.3% was the best cutoff point with a sensitivity of 91.8% and a specificity of 38% to distinguish patients with SLE from healthy individuals. CONCLUSION: The level of IFI44L promoter methylation from whole peripheral blood in Iranian SLE patients was significantly lower than healthy controls. Furthermore, the DNA methylation level of IFI44L promoter was not associated with renal damage in patients with SLE.
RESUMO
Macrophages, which accumulate in tissues during inflammation, may be polarized toward pro-inflammatory (M1) or tissue reparative (M2) phenotypes. The balance between these phenotypes can have a substantial influence on the outcome of inflammatory diseases such as atherosclerosis. Improved biomarkers of M1 and M2 macrophages would be beneficial for research, diagnosis, and monitoring the effects of trial therapeutics in such diseases. To identify novel biomarkers, we have characterized the global proteomes of THP-1 macrophages polarized to M1 and M2 states in comparison with unpolarized (M0) macrophages. M1 polarization resulted in increased expression of numerous pro-inflammatory proteins including the products of 31 genes under the transcriptional control of interferon regulatory factor 1 (IRF-1). In contrast, M2 polarization identified proteins regulated by components of the transcription factor AP-1. Among the most highly upregulated proteins under M1 conditions were the three interferon-induced proteins with tetratricopeptide repeats (IFITs: IFIT1, IFIT2, and IFIT3), which function in antiviral defense. Moreover, IFIT1, IFIT2, and IFIT3 mRNA were strongly upregulated in M1 polarized human primary macrophages and IFIT1 was also expressed in a subset of macrophages in aortic sinus and brachiocephalic artery sections from atherosclerotic ApoE-/- mice. On the basis of these results, we propose that IFITs may serve as useful markers of atherosclerosis and potentially other inflammatory diseases.
Assuntos
Fator Regulador 1 de Interferon/genética , Macrófagos/imunologia , Proteínas/análise , Proteômica/métodos , Repetições de Tetratricopeptídeos , Animais , Aterosclerose/diagnóstico , Aterosclerose/patologia , Biomarcadores/análise , Humanos , Inflamação/diagnóstico , Inflamação/patologia , Macrófagos/química , Camundongos , Camundongos Knockout , Proteínas/genética , Células THP-1 , Regulação para Cima/genéticaRESUMO
BACKGROUND: Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host's immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host's response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection. METHODS: Male C57BL/6 mice were exposed to 20 µg of SWCNT or control vehicle by intratracheal instillation followed by intranasal exposure to 3.2 × 104 TCID50 IAV or PBS after 3 days. On day 7 mice were euthanized and near-infrared fluorescence (NIRF) imaging was used to track SWCNT in lung tissues. Viral titers, histopathology, and mRNA expression of antiviral and inflammatory genes were measured in lung tissue. Differential cell counts and cytokine levels were quantified in bronchoalveolar lavage fluid (BALF). RESULTS: Viral titers showed a 63-fold increase in IAV in SWCNT + IAV exposed lungs compared to the IAV only exposure. Quantitation of immune cells in BALF indicated an increase of neutrophils in the IAV group and a mixed profile of lymphocytes and neutrophils in SWCNT + IAV treated mice. NIRF indicated SWCNT remained in the lung throughout the experiment and localized in the junctions of terminal bronchioles, alveolar ducts, and surrounding alveoli. The dual exposure exacerbated pulmonary inflammation and tissue lesions compared to SWCNT or IAV single exposures. IAV exposure increased several cytokine and chemokine levels in BALF, but greater levels of IL-4, IL-12 (P70), IP-10, MIP-1, MIP-1α, MIP-1ß, and RANTES were evident in the SWCNT + IAV group. The expression of tlr3, ifnß1, rantes, ifit2, ifit3, and il8 was induced by IAV alone but several anti-viral targets showed a repressed trend (ifits) with pre-exposure to SWCNT. CONCLUSIONS: These findings reveal a pronounced effect of SWCNT on IAV infection in vivo as evidenced by exacerbated lung injury, increased viral titers and several cytokines/chemokines levels, and reduction of anti-viral gene expression. These results imply that SWCNT can increase susceptibility to respiratory viral infections as a novel mechanism of toxicity.
Assuntos
Lesão Pulmonar Aguda/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Nanotubos de Carbono/toxicidade , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Carga Viral/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/virologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Citocinas/análise , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Pulmão/patologia , Pulmão/ultraestrutura , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/induzido quimicamente , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/induzido quimicamente , Pneumonia Viral/virologia , RNA Mensageiro/metabolismoRESUMO
Interferon-inducible protein 56 (IFI56, also known as ISG56/IFIT1, interferon-induced protein with tetratricopeptide repeats 1) is strongly induced in response to interferon and a potent inhibitor of viral replication and translational initiation. Here, we describe the identification of IFI56 (OfIFI56) in olive flounder, its characteristic features, and expression levels in various tissues before and after viral hemorrhagic septicemia virus (VHSV) infection. The full-length OfIFI56 sequence was identified from rapid amplification of cDNA ends PCR. The complete coding sequence of OfIFI56 is 1971 bp in length and encodes 431 amino acids. The putative OfIFI56 protein has multiple tetratricopeptide (TPR) motifs, which regulate diverse biological processes, such as organelle targeting, protein import, and vesicle fusion. Based on sequence analysis, the Larimichthys crocea IFI56 protein (61%) had the highest sequence homology to OfIFI56. In healthy olive flounder, OfIFI56 mRNA expression was detected in many tissues such as intestine, gill, head kidney, heart, spleen, and trunk kidney tissues. After VHSV challenge, OfIFI56 mRNA was significantly up-regulated in these tissues. Additionally, OfIFI56 expression was induced by poly I:C but not by Streptococcus parauberis and S. iniae infection or lipopolysaccharide injection in kidney and spleen tissues of olive flounder. These results demonstrate that piscine OfIFI56 expression is not induced by bacterial infection but is selectively induced by viral infection, especially VHSV, and that OfIFI56 may play an important role in the host response against VHSV infection.
Assuntos
Proteínas de Transporte/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguados , Infecções Estreptocócicas/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Septicemia Hemorrágica Viral/genética , Septicemia Hemorrágica Viral/virologia , Lipopolissacarídeos/farmacologia , Novirhabdovirus/fisiologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus/fisiologiaRESUMO
Interferons (IFNs) and IFN-inducible proteins play numerous physiological roles, particularly in antiviral defense mechanisms of the innate immune response with the presence of pathogens. IFN-induced protein-35 kDa (IFP35) is induced by Type II IFN (IFN-γ); it is a cytoplasmic protein that can be translocated to the nucleus via the stimulation of IFN. In this study, we report the complete molecular characterization of the IFP35 cDNA sequence from the black rockfish in an effort to understand its role in the immune response. The coding sequence of RfIFP35 encoded a putative peptide of 371 amino acids containing two characteristic Nmi/IFP 35 domains (NIDs), which are highly conserved among its counterparts. The protein showed a molecular mass of 42.2 kDa with a theoretical pI of 5.05 and was predicted to be unstable because of its high instability index (49.37). Therefore, the protein-protein interaction is essential for its stability, which may be facilitated by the intrinsically disordered regions in this protein. According to cellular location prediction, the RfIFP35 protein is cytosolic. Phylogenetic analysis showed that RfIFP35 was cladded within the fish counterparts. Tissue distribution profiling revealed a ubiquitous presence of the protein in all examined tissues, with highest expression in the blood followed by the spleen tissues. The expression of RfIFP35 during immune challenge with poly I:C and lipopolysaccharide treatments affirms its putative importance in the first-line host defense system. RfIFN-γ mRNA was significantly expressed at 6 h p.i. in blood and 3 h p.i. in the spleen following treatment with different immune stimulants, and its expression was higher compared to that of RfIFP35 mRNA. Therefore, the modulation patterns of both RfIFP35 and RfIFN-γ suggest that RfIFP35 may be induced by RfIFN-γ.
Assuntos
Proteínas de Peixes/genética , Peixes/genética , Peixes/imunologia , Expressão Gênica , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterináriaRESUMO
Interferon-induced protein with tetratricopeptide repeats (IFIT) is involved in antiviral immunity in mammalian cells. In fish, the function of this group of proteins is unknown. In this study, we report the identification of an IFIT homologue (named CsIFIT1) from tongue sole (Cynoglossus semilaevis) and examined its antiviral potential. CsIFIT1 is composed of 436 residues and shares 30.9%-58.7% overall sequence identities with the known IFITs of a number of teleost species. In silico analysis identified two tetratricopeptide repeats in CsIFIT1. Quantitative real time RT-PCR analysis showed that CsIFIT1 expression was most abundant in immune relevant organs and upregulated, in a time-dependent manner, by experimental infection with the fish viral pathogen megalocytivirus. When CsIFIT1 was overexpressed in tongue sole before megalocytivirus infection, viral replication in fish tissues was blocked to significant extents. Consistently, when CsIFIT1 expression in tongue sole was knocked down by siRNA, viral replication in fish tissues was significantly enhanced. Taken together, these results indicate that CsIFIT1 is likely a key factor of antiviral immunity and is required for optimal defense against viral infection.
Assuntos
Boraginaceae/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica/imunologia , Viroses/veterinária , Replicação Viral/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Interferência de RNA , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Viroses/imunologia , Replicação Viral/genéticaRESUMO
OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Neoplasias Pancreáticas , Proteínas de Ligação a RNA , Via de Sinalização Wnt , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , beta Catenina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genéticaRESUMO
BACKGROUND: Abnormalities in iron and lipid metabolism are recognized as key contributors to atherosclerosis (AS). Therefore, this study proposes to characterize the biomarker related to iron and lipid metabolism in AS using bioinformatics, animal, and cell experiments. METHODS: The limma package was utilized to identify differentially expressed genes (DEGs) in GSE70126 and GSE70619 datasets, and biomarkers were screened using enrichment analysis and PPI networks. IFIT2 was knocked down using shRNA lentivirus in a high fat diet (HFD)-induced APOE-/- AS model to investigate its effects of IFIT2 on the pathology, iron retention, and lipid accumulation. Iron storage-related and cholesterol efflux-related proteins were evaluated following exogenous modulation of IFIT2 expression in ox-LDL-induced foamy macrophages. RESULTS: Compared to non-foamy macrophages from the aorta, 189 and 4152 DEGs were identified in foamy macrophages within the GSE70126 and GSE70619 datasets, respectively. Moreover, intersecting DEGs may modulate immune responses, cell adhesion, vascular permeability, and oxidative stress through NF-kappa B, Wnt, TNF and HIF-1 signaling pathways. Notably, IFIT2 was significantly upregulated in foamy macrophages and AS models. In vivo, IFIT2 co-localized with foamy macrophages, and its knockdown led to reductions in plasma lipid levels, plaque area, immune infiltration, iron retention, and lipid accumulation. In vitro, IFIT2 knockdown alleviated the ox-LDL-induced increase in iron storage-related proteins (Ferritin-L and Ferritin-H) and iron (Fe2+ and Fe3+) in foamy macrophages. Furthermore, IFIT2 knockdown reduced lipid accumulation and upregulated cholesterol efflux-related proteins (PPARγ, LXRα, ABCA1, and ABCG1) in foamy macrophages. CONCLUSION: IFIT2 knockdown attenuates iron retention and lipid accumulation in AS plaques, and facilitated cholesterol efflux from foamy macrophages via the PPARγ/LXRα/ABCA1-ABCG1 pathway.
Assuntos
Aterosclerose , Colesterol , Ferro , Aterosclerose/metabolismo , Aterosclerose/genética , Animais , Ferro/metabolismo , Camundongos , Colesterol/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Dieta Hiperlipídica , Células Espumosas/metabolismo , Metabolismo dos Lipídeos/genética , Lipoproteínas LDL/metabolismo , Modelos Animais de DoençasRESUMO
Viruses have evolved various mechanisms to subvert the host's immune system and one of them is preventing the infected cells from sending out chemotactic signals to activate the adaptive immune response. Japanese encephalitis virus (JEV) is a neuropathologic flavivirus that is responsible for significant number of child mortalities in various parts of South-East Asia. In this study we show that JEV modulates suppressors of cytokine signaling (SOCS)1 and 3 expression in macrophages to bring about changes in the JAK-STAT signaling cascade, so as to inhibit proinflammatory cyto/chemokine release. Using real time PCR, immunoblotting and immunofluorescent staining, we show that the expression of type 1 interferons and intracellular expression of viral genes are also affected over time. Also, following the initial activation of SOCS1 and 3, there is production of interferon-inducible anti-viral proteins in the cells which may be responsible for inhibiting viral replication. However, even at later time points, viral genes were still detected from the macrophages, albeit at lesser quantities, than earlier time points, indicative of intracellular persistence of the virus in a latent form. On knocking down SOCS1 and SOCS3 we found a significant decrease in viral gene expression at an early time point, indicating the dysregulation of the signaling cascade leading to increased production of interferon-inducible anti-viral proteins. Taken together, our study provides an insight into the role of JEV infection in modulating the JAK-STAT pathway with the help of SOCS leading to the generation of an antiviral innate immune response.
Assuntos
Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/imunologia , Macrófagos/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Células Cultivadas , Quimiocinas/biossíntese , Citocinas/biossíntese , Vírus da Encefalite Japonesa (Espécie)/imunologia , Feminino , Imunidade Inata/imunologia , Interferon Tipo I/biossíntese , Janus Quinases/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Proteínas Supressoras da Sinalização de Citocina/genética , Replicação Viral/imunologiaRESUMO
Background: The interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene is strongly associated with disease activity index of childhood systemic lupus erythematosus (SLE). However, whether IFIT1-regulated gene expression is the molecular basis of the pathogenesis of SLE has not been fully investigated. Methods: Dataset GSE11909 was used to analyze the expression profiles of IFIT1 gene in 103 SLE cases and 12 healthy individuals. Differentially expressed genes (DEGs)-affected by IFIT1 gene were screened between the case group and control group, followed by gene function analysis. The clinical diagnostic potential of the least absolute shrinkage and selection operator (LASSO) model, established based on the expression profiles of IFIT1 and IFIFT1-affected DEGs, was evaluated. Analysis of association between IFIFT1-affected DEGs and immune infiltration was performed. Results: IFIT1 was highly expressed in childhood SLE patients. IFIT1 and IFIT1-affected DEGs showed the potential to serve as a diagnostic marker for childhood SLE with area under the curve (AUC) value of 0.947. Childhood SLE patients showed 826 upregulated DEGs and 4,111 downregulated DEGs compared to the control group. Among them, 208 upregulated DEGs and 214 downregulated DEGs were identified in the IFIT1-high group compared to the IFIT1-low group. The LASSO model for the diagnosis of childhood SLE involved 7 marker genes that were related to immune checkpoint and tertiary lymphoid structure in SLE. Conclusions: Our results confirmed the clinical diagnostic potential of IFIT1 and IFIT1-affected genes in childhood SLE. Moreover, this study elucidated that IFIT1-induced changes in the transcriptome are involved in immune checkpoint and tertiary lymphoid structure in childhood.
RESUMO
Interferon-induced protein-35 kDa (IFI35) was an antiviral protein induced by interferon (IFN)-γ, which plays an important role in the IFN-mediated antiviral signaling pathway. Here, we cloned and identified IFI35 in the chicken for the first time. Chicken IFI35 (chIFI35) contains an open reading frame (ORF) of 1,152 bp encoding a protein of 384 amino acids containing two conserved Nmi/IFI35 domain (NID) motifs. Tissue distribution analysis of chIFI35 in healthy and Newcastle disease (ND) virus-infected chickens indicated a positive correlation between chIFI35 mRNA transcription and ND viral loads in various tissues. The role of chIFI35 in regulation NDV replication were further assessed by up- or down-regulated chIFI35 expression in DF-1 cells transfected with plasmid harboring chIFI35, pCMV-3HA-chIFI35 or shRNA targeting chIFI35, pshRNA-chIFI35 plasmids. NDV replications in DF-1 cells were significantly reduced or slightly increased by over- or under-expression of the chIFI35 protein, respectively, indicating the role of chIFI35 in anti-NDV infection. Moreover, chIFI35 also involved in regulation of viral gene transcription and IFNs expression. The collected data were meaningful for research of chicken antiviral immunity and shed light on the pleiotropic antiviral effect of chIFI35 during NDV infection.
Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Antivirais/farmacologia , Galinhas , Vírus da Doença de Newcastle/genética , Replicação ViralRESUMO
OBJECTIVE: Current commercially available immunological tests cannot be used for discriminating active tuberculosis (TB) from latent TB infection. To evaluate the value of biomarker candidates in the diagnosis of active TB, this study aimed to identify differentially expressed genes in peripheral blood mononuclear cells (PBMCs) between patients with active TB and individuals with latent TB infection by transcriptome sequencing. METHODS: The differentially expressed genes in unstimulated PBMCs and in Mycobacterium tuberculosis (Mtb) antigen-stimulated PBMCs from patients with active TB and individuals with latent TB infection were identified by transcriptome sequencing. Selected candidate genes were evaluated in cohorts consisting of 110 patients with TB, 30 individuals with latent TB infections, and 50 healthy controls by quantitative real-time RT-PCR. Receiver operating characteristic (ROC) curve analysis was performed to calculate the diagnostic value of the biomarker candidates. RESULTS: Among the differentially expressed genes in PBMCs without Mtb antigen stimulation, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) had the highest area under curve (AUC) value (0.918, 95% CI: 0.852-0.984, P<0.0001) in discriminating patients with active TB from individuals with latent TB infection, with a sensitivity of 91.86% and a specificity of 84.00%. In Mtb antigen-stimulated PBMCs, orosomucoid 1 (ORM1) had a high AUC value (0.833, 95% CI: 0.752-0.915, P<0.0001), with a sensitivity of 81.94% and a specificity of 70.00%. CONCLUSION: IFIT3 and ORM1 might be potential biomarkers for discriminating active TB from latent TB infection.
Assuntos
Tuberculose Latente , Tuberculose , Humanos , Tuberculose Latente/diagnóstico , Tuberculose Latente/genética , Orosomucoide/metabolismo , Leucócitos Mononucleares/química , Leucócitos Mononucleares/metabolismo , Tuberculose/diagnóstico , Tuberculose/genética , Biomarcadores/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
OBJECTIVE: Central nervous system tuberculosis is the most serious form of extrapulmonary tuberculosis. We aim to discover potential biomarkers involved in the development of the disease. METHODS: Through gene difference analysis, construction of a protein interaction network and tissue specific analysis and other bioinformatics analysis methods, we found out the relatively high expression of important substances in the central nervous system, interferon induced protein with tetratricopeptide repeats 1. Subsequently, the lesion tissue and the resection margin tissue away from the lesion were collected from the 6 cases of central nervous system tuberculosis patients diagnosed from 2019 to 2020, and the pathological manifestations were observed by Hematoxylin and Eosin (H&E) staining, and the expression of IFIT1 was verified by immunohistochemistry. RESULTS: A total of 101 differential genes were analyzed between extrapulmonary tuberculosis patients and normal people, and they were mainly enriched in the interferon pathway. The protein interaction network unearthed 34 key genes. Through tissue specific analysis, it was found that IFIT1 is relatively high in the central nervous system. H&E staining showed the expression of multinucleated macrophages, and immunohistochemistry showed that IFIT1 was significantly positively expressed in the lesion tissue. CONCLUSION: IFIT1 is an important substance involved in central nervous system tuberculosis.
RESUMO
Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.
RESUMO
The Interferon-induced protein with tetratricopeptide repeats (IFIT) family is an important component of the antiviral immune response. There are currently four known IFIT family members in humans, namely IFIT1, IFIT2, IFIT3 and IFIT5. Recent discoveries have brought attention to the significant roles of IFITs in cancer. This review summarises current knowledge on the biological roles of different IFIT proteins in various types of malignant neoplasm, and highlights the potential use of these molecules as cancer biomarkers and prognostic factors.