RESUMO
Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.
Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologiaRESUMO
The activation of the immune system is crucial for the fate of the ischemic brain tissue and neurological outcome in experimental stroke. Rapidly after stroke γδ (γδ17), T cells release IL-17A in the ischemic brain and thereby amplify the early detrimental immune response. Notably, IL-17A levels in γδ17 T cells are modulated by the intestinal microbiota which is, in turn, shaped by the diet. Importantly, besides their proinflammatory effects, meningeal γδ17 T cells have been recently implicated in regulating neuronal signaling, behavior, and cognition under homeostatic and pathological conditions at the brain-meningeal interface. Against this background, we propose that a dietary intervention represents a promising treatment option to improve poststroke outcomes by the modulation of the microbiota composition and IL-17A levels in γδ T cells.
RESUMO
IL-17a is widely considered an inflammatory cytokine, linked to the development and severity of autoimmune diseases such as inflammatory bowel disease and psoriasis. However, a recent report by Konieczny et al. sheds light on a novel protective role of IL-17a in wound healing, adding to the growing list of studies highlighting a noninflammatory function for IL-17a.
Assuntos
Doenças Autoimunes , Psoríase , Humanos , Interleucina-17 , Cicatrização , CitocinasRESUMO
Interleukin (IL)-17A contributes to hypertension in preclinical models. T helper 17 and dendritic cells are activated by NaCl, which could involve the epithelial Na+ channel (ENaC). We hypothesized that the ENaC blocker amiloride reduces plasma IL-17A and related cytokines in patients with hypertension. Concentrations of IL-17A, IFN-γ, TNF, IL-6, IL-1ß, and IL-10 were determined by immunoassays in plasma from two patient cohorts before and after amiloride treatment: 1) patients with type 2 diabetes mellitus (T2DM) and treatment-resistant hypertension (n = 69, amiloride 5-10 mg/day for 8 wk) and 2) patients with hypertension and type 1 diabetes mellitus (T1DM) (n = 29) on standardized salt intake (amiloride 20-40 mg/day, 2 days). Plasma and tissue from ANG II-hypertensive mice with T1DM treated with amiloride (2 mg/kg/day, 4 days) were analyzed. The effect of amiloride and benzamil on macrophage cytokines was determined in vitro. Plasma cytokines showed higher concentrations (IL-17A â¼40-fold) in patients with T2DM compared with T1DM. In patients with T2DM, amiloride had no effect on IL-17A but lowered TNF and IL-6. In patients with T1DM, amiloride had no effect on IL-17A but increased TNF. In both cohorts, blood pressure decline and plasma K+ increase did not relate to plasma cytokine changes. In mice, amiloride exerted no effect on IL-17A in the plasma, kidney, aorta, or left cardiac ventricle but increased TNF in cardiac and kidney tissues. In lipopolysaccharide-stimulated human THP-1 macrophages, amiloride and benzamil (from 1 nmol/L) decreased TNF, IL-6, IL-10, and IL-1ß. In conclusion, inhibition of ENaC by amiloride reduces proinflammatory cytokines TNF and IL-6 but not IL-17A in patients with T2DM, potentially by a direct action on macrophages.NEW & NOTEWORTHY ENaC activity may contribute to macrophage-derived cytokine release, since amiloride exerts anti-inflammatory effects by suppression of TNF and IL-6 cytokines in patients with resistant hypertension and type 2 diabetes and in THP-1-derived macrophages in vitro.
Assuntos
Amilorida , Diabetes Mellitus Tipo 2 , Bloqueadores do Canal de Sódio Epitelial , Hipertensão , Interleucina-17 , Interleucina-6 , Fator de Necrose Tumoral alfa , Amilorida/farmacologia , Amilorida/uso terapêutico , Humanos , Interleucina-17/sangue , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/imunologia , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Hipertensão/tratamento farmacológico , Hipertensão/sangue , Feminino , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Fator de Necrose Tumoral alfa/sangue , Idoso , Camundongos , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Anti-Hipertensivos/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangueRESUMO
PURPOSE: To assess the role of the interleukin (IL)-17 A/IL-17 receptor A (IL-17RA) in Kawasaki disease (KD)-related coronary arteritis (CA). METHODS: In human study, the plasma levels of IL-17 A and coronary arteries were concurrently examined in acute KD patients. In vitro responses of human coronary endothelial cells to plasma stimulation were investigated with and without IL-17RA neutralization. A murine model of Lactobacillus casei cell-wall extract (LCWE)-induced CA using wild-type Balb/c and Il17ra-deficient mice were also inspected. RESULTS: The plasma levels of IL-17 A were significantly higher in KD patients before intravenous immunoglobulin therapy, especially in those with coronary artery lesion. The pre-IVIG IL-17 A levels positively correlated with maximal z scores of coronary diameters and plasma-induced endothelial mRNA levels of chemokine (C-X-C motif) ligand-1, IL-8, and IL-17RA. IL-17RA blockade significantly reduced such endothelial upregulations of aforementioned three genes and inducible nitric oxide synthase, and neutrophil transmigration. IL-17RA expression was enhanced on peripheral blood mononuclear cells in pre-IVIG KD patients, and in the aortic rings and spleens of the LCWE-stimulated mice. LCWE-induced CA composed of dual-positive Ly6G- and IL-17 A-stained infiltrates. Il17ra-deficient mice showed reduced CA severity with the fewer number of neutrophils and lower early inducible nitric oxide synthase and chemokine (C-X-C motif) ligand-1 mRNA expressions than Il17ra+/+ littermates, and absent IL-17RA upregulation at aortic roots. CONCLUSION: IL-17 A/IL-17RA axis may play a role in mediating aortic neutrophil chemoattraction, thus contributory to the severity of CA in both humans and mice. These findings may help to develop a new therapeutic strategy toward ameliorating KD-related CA.
Assuntos
Arterite , Síndrome de Linfonodos Mucocutâneos , Humanos , Animais , Camundongos , Infiltração de Neutrófilos , Óxido Nítrico Sintase Tipo II , Receptores de Interleucina-17/genética , Células Endoteliais , Imunoglobulinas Intravenosas , Interleucina-17 , Leucócitos Mononucleares , Ligantes , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Quimiocinas , RNA MensageiroRESUMO
The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.
Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Dieta Ocidental , Aorta/metabolismo , Células Mieloides/metabolismo , Monócitos/metabolismo , Adesão Celular , Receptores de Interleucina/metabolismoRESUMO
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease caused by intrahepatic bile duct injuries, resulting in fibrosis, cirrhosis, and eventually liver failure. T helper (Th) 17 cells are proposed to involve in the pathogenesis of PBC. However, how and which Th17 cell-derived cytokines affect PBC remains unclear. In this study, we investigated the effects of Th17 effector cytokines, including interleukin (IL)-17A, IL-17F, and IL-21 in PBC using a xenobiotic-induced mouse model of autoimmune cholangitis (inducible chemical xenobiotic models of PBC) treated with cytokine-expressing adeno-associated virus. Our results showed that administration of IL-17A, the well-known main cytokine produced by Th17 cells, did not augment liver inflammation or fibrosis. In contrast, we noted IL-17A-treated mice had lower hepatic Th1 cell numbers and higher hepatic CD11b+Ly6G+ polymorphonuclear myeloid-derived suppressor cell numbers. IL-17F did not alter liver inflammation or fibrosis. However, the administration of IL-21 exacerbated liver inflammatory responses and portal cell infiltration. IL-21 markedly increased the numbers of activated CD8+ T cells and liver tissue-resident memory CD8+ T cells. Moreover, IL-21 aggravates liver fibrosis in mice with autoimmune cholangitis. These results emphasized that not IL-17A but IL-21 in Th17 cell-derived cytokines affected the pathogenesis of PBC. IL-21 enhanced liver inflammation and progression to fibrosis by enhancing the numbers and effector activities of CD8+ T cells. Delineation of the effects of different Th17 effector cytokines in PBC offers clues for developing new therapeutic approaches.
Assuntos
Doenças Autoimunes , Colangite , Cirrose Hepática Biliar , Animais , Camundongos , Interleucina-17 , Xenobióticos , Interleucinas , Citocinas , Colangite/patologia , Fibrose , Cirrose Hepática , Doenças Autoimunes/patologia , InflamaçãoRESUMO
BACKGROUND: From asymptomatic to acute and life-threatening pulmonary infection, the clinical manifestations of COVID-19 are highly variable. Interleukin (IL)-6 and IL-17A are key drivers of hyper inflammation status in COVID-19, and their elevated levels are hallmarks of the infection progression. To explore whether prognosis and susceptibility to COVID-19 are linked to IL-6 rs1800795 and IL-17A rs2275913, these single-nucleotide polymorphisms (SNPs) were assessed in a sample of Iranian COVID-19 patients. METHODS: This study enrolled two hundred and eighty COVID-19 patients (140 non-severe and 140 severe). Genotyping for IL-6 rs1800795 and IL-17A rs2275913 was performed using tetra primer-amplification refractory mutation system-polymerase chain reaction (tetra-ARMS-PCR). IL-6 and IL-17A circulating levels were measured using enzyme-linked immunosorbent assay (ELISA). Also, mortality predictors of COVID-19 were investigated. RESULTS: The rs1800795 GG genotype (78/140 (55.7 %)) and G allele (205/280 (73.2 %)) were significantly associated with a positive risk of COVID-19 severe infection (OR = 2.19, 95 %CI: 1.35-3.54, P =.006 and OR = 1.79, 95 %CI: 1.25-2.56, P <.001, respectively). Also, rs1800795 GG genotype was significantly linked to disease mortality (OR = 1.95, 95 %CI: 1.06-3.61, P =.04). The rs2275913 GA genotype was protective against severe COVID-19 (OR = 0.5, 95 %CI: 0.31--0.80, P =.012). However, the present study did not reveal any significant link between rs2275913 genotypes with disease mortality. INR ≥ 1.2 (OR = 2.19, 95 %CI: 1.61-3.78, P =.007), D-dimer ≥ 565.5 ng/mL (OR = 3.12, 95 %CI: 1.27-5.68, P =.019), respiratory rate ≥ 29 (OR = 1.19, 95 %CI: 1.12-1.28, P =.001), IL-6 serum concentration ≥ 28.5 pg/mL (OR = 1.97, 95 %CI: 1.942-2.06, P =.013), and IL-6 rs1800795 GG genotype (OR = 1.95, 95 %CI: 1.06-3.61, P =.04) were predictive of COVID-19 mortality. CONCLUSION: The rs1800795 GG genotype and G allele were associated with disease severity, and INR, D-dimer, respiratory rate, IL-6 serum concentration, and IL-6 rs1800795 GG genotype were predictive of COVID-19 mortality.
Assuntos
COVID-19 , Interleucina-6 , Humanos , Interleucina-6/genética , Interleucina-17/genética , Irã (Geográfico) , Predisposição Genética para Doença , COVID-19/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , PrognósticoRESUMO
Ulcerative colitis (UC) is characterized by chronic inflammation of the large intestine with involvement of Th17 cells and interleukin (IL)-17A. The role of IL17A and IL17A receptor (IL17RA) variants in pathophysiology of UC still remains inconclusive. The aim was to evaluate the association between IL17A and IL17RA variants with susceptibility, IL-17A plasma levels, and endoscopic activity in UC. The study included 104 patients with UC and 213 controls. Patients were divided according to endoscopic activity (remission/mild and moderate/severe). The IL17A rs3819024 A>G and rs3819025 G>A, and IL17RA rs2241043 C>T, rs2241049 A>G, and rs6518661 G>A variants were genotyped using real time polymerase chain reaction. IL-17A plasma levels were determined using immunofluorimetric assay. Neither IL17A nor IL17RA variants were associated with UC susceptibility. The IL17A rs3819024 AG genotype was associated to high levels of IL-17 only in patients. Patients with the G allele of IL17RA rs2241049 showed 2.944 more chance of developing moderate/severe disease. The haplotype analysis showed that IL17RA rs2241049 and rs6518661 was not associated with UC susceptibility and haplotypes constituted with G allele of these variants were not associated with disease severity (p = 0.09). In conclusion, the IL17A rs3819024 AG genotype was associated with elevated IL-17A plasma levels in patients with UC but not in controls and the IL17RA rs2241049 AG+GG genotypes were associated to severity of UC. These results suggest a possible hidden interaction between the IL17A rs3819024 variant and other genetic, environmental, and epigenetic factors in the IL-17A expression that is present only in patients with UC.
Assuntos
Colite Ulcerativa , Predisposição Genética para Doença , Interleucina-17 , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-17 , Humanos , Interleucina-17/genética , Interleucina-17/sangue , Colite Ulcerativa/genética , Colite Ulcerativa/sangue , Masculino , Feminino , Receptores de Interleucina-17/genética , Adulto , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Haplótipos/genética , Genótipo , Alelos , Estudos de Casos e Controles , Índice de Gravidade de DoençaRESUMO
BACKGROUND: Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS: Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS: Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/ß-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS: We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/ß-Catenin signaling pathway.
Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Quimiocina CXCL12 , Progressão da Doença , Interleucina-17 , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt , Interleucina-17/metabolismo , Quimiocina CXCL12/metabolismo , Humanos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Camundongos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismoRESUMO
Chlamydia trachomatis infection is the leading cause of bacterial urogenital infection and has been demonstrated to drive inflammation and scarring of the reproductive tract. Recent studies have identified key triggers of proinflammatory adaptive immune responses driven by innate leukocytes and epithelia driving immunopathology. Utilizing chimeric mouse models, we investigated the definitive source and role of IL17 and IL17 signalling receptors during early Chlamydia muridarum infection of the female urogenital tract. Bone marrow transplants from wild-type (WT) and IL17A-/- mice to recipients demonstrated equivocal infection kinetics in the reproductive tract, but interestingly, adoptive transfer of IL17A-/- immune cells to WT recipients resulted in no infertility, suggesting a haematopoietic (as opposed to tissue) source of IL17 driving immunopathology. To further delineate the role of IL17 in immunopathology, we infected WT and IL17 receptor A (IL17RA)-/- female mice and observed a significant reduction in immunopathology in IL17RA-/- mice. WT bone marrow transplants to IL17RA-/- recipient mice prevented hydrosalpinx, suggesting signalling through IL17RA drives immunopathology. Furthermore, early chemical inhibition of IL17 signalling significantly reduced hydrosalpinx, suggesting IL17 acts as an innate driver of disease. Early during the infection, IL17 was produced by γδ T cells in the cervico-vagina, but more importantly, by neutrophils at the site of infertility in the oviducts. Taken together, these data suggest innate production of IL17 by haematopoietic leukocytes drives immunopathology in the epithelia during early C. muridarum infection of the female reproductive tract.
Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Interleucina-17 , Infecções do Sistema Genital , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infecções do Sistema Genital/patologiaRESUMO
BACKGROUND: Breast and cervical cancer are the two leading cancers in terms of incidence and mortality. Previous studies reported different interleukins, including interleukin-17A (IL-17A) to be responsible for the development and progression of these malignancies. Therefore, we speculated that the variants in this gene might be associated with these cancer developments in Bangladeshi population. For evaluating the hypothesis, we investigated the association of IL-17A rs3748067 polymorphism with the susceptibility of both breast and cervical cancer. METHODS: This case-control study was performed on 156 breast cancer patients, 156 cervical cancer patients, and 156 controls using the tetra-primer amplification refractory mutation system-polymerase chain reaction. The statistical software package SPSS (version 25.0) was applied for analyses. The genetic association was measured by the odds ratio (OR) and 95% confidence intervals (CIs). A statistically significant association was considered when p-value ≤ 0.05. Functional analysis was performed using GEPIA and UALCAN databases. RESULTS: From the calculation of the association of IL-17A rs3748067 with breast cancer, it is found that no genotype or allele showed a statistically significant association (p>0.05). On the other hand, the analysis of IL-17A rs3748067 with cervical cancer demonstrated that CT genotype showed a significant association (CT vs. CC: OR=1.79, p=0.021). In the overdominant model, CT genotype also revealed a statistically significant association with cervical cancer, which is found to be statistically significant (OR=1.84, p=0.015). CONCLUSION: Our study summarizes that rs3748067 polymorphism in the IL-17A gene may be associated with cervical cancer but not breast cancer in Bangladeshi patients. However, we suggest studies in the future with a larger sample size.
Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Interleucina-17 , Polimorfismo de Nucleotídeo Único , Neoplasias do Colo do Útero , Humanos , Feminino , Interleucina-17/genética , Neoplasias da Mama/genética , Neoplasias do Colo do Útero/genética , Estudos de Casos e Controles , Bangladesh/epidemiologia , Pessoa de Meia-Idade , Adulto , Genótipo , Estudos de Associação Genética , Alelos , Razão de Chances , IdosoRESUMO
As a prototypical member of the IL-17 family, interleukin-17A (IL-17A) has received increasing attentions for its potent proinflammatory role as well as potential to be a key therapeutic target in human autoimmune inflammatory diseases; however, its roles in other pathological scenarios like neuroinflammations are not fully elucidated yet but appear essentially correlating and promising. Glaucoma is the leading cause of irreversible blindness with complicated pathogenesis still to be understood, where neuroinflammation was reported to be critically involved in its both initiation and progression. Whether IL-17A takes part in the pathogenesis of glaucoma through interfering neuroinflammation due to its potent proinflammatory effect is still unknown. In the present study, we investigated the role of IL-17A in the pathological process of glaucoma neuropathy as well as its relationship with the predominant immune inflammation mediator microglia in retina, trying to elucidate the underlying mechanisms from the view of inflammation modulation. In our study, RNA sequencing was performed for the retinas of chronic ocular hypertension (COH) and control mice. Western blot, RT-PCR, immunofluorescence, and ELISA were used to evaluate the microglial activation and proinflammatory cytokines release at conditioned levels of IL-17A, along with assessment of optic nerve integrity including retinal ganglion cells (RGCs) counting, axonal neurofilament quantification, and flash visual-evoked potential (F-VEP) examination. And the possibly involved signaling pathways were screened out to go through further validation in scenarios with conditioned IL-17A. Subsequently, IL-17A was found to be significantly upregulated in COH retina. Furthermore, suppression of IL-17A effectively diminished the loss of RGCs, improved axonal quality, and F-VEP performance in COH mice. Mechanistically, IL-17A promoted microglial activation and proinflammatory cytokines release along with enhanced phenotypic conversion of activated microglia to M2-type in early stage and to M1-type in late stage in glaucomatous retinas. Microglia elimination decreased the proinflammatory factors secretion, enhanced the RGCs survival and axonal quality mediated by IL-17A. Furthermore, IL-17A-induced the overactivation of microglia in glaucomatous condition was alleviated after blocking the p38 MAPK pathway. Taken together, IL-17A is involved in the regulation of retinal immune response and RGCs cell death in experimental glaucoma by essentially promoting retinal microglial activation via p38 MAPK signaling pathway. IL-17A dynamically regulates the phenotypic conversion of retinal microglia in experimental glaucoma partly depending on the duration of elevated intraocular pressure. Suppression of IL-17A contributes to alleviate glaucoma neuropathy and exhibits promising potential as an innovative target for therapeutic strategy in glaucoma.
Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Humanos , Animais , Interleucina-17/metabolismo , Microglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doenças Neuroinflamatórias , Glaucoma/metabolismo , Retina/metabolismo , Hipertensão Ocular/etiologia , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de DoençasRESUMO
Rheumatoid arthritis (RA) is a chronic inflammatory disease which is closely related to genetic background. Single-nucleotide polymorphisms (SNPs) have been found to play an important role in the development of RA. This study intends to investigate the links between gene polymorphisms in the interleukin-23 receptor (IL23R) and interleukin 17A (IL17A) and susceptibility to RA in the Western Chinese Han population. Four SNPs (rs6693831 T > C, rs1884444 G > T, and rs7517847 T > G in IL23R gene, and rs2275913 G > A in IL17A gene) were genotyped in 246 RA patients and 362 healthy controls by high resolution melting analysis. The comparative analyses among genotype distributions, clinical indicators, and IL-17A and IL-23R levels in RA patients were also performed. The study revealed that the SNP rs6693831 and rs1884444 of IL23R had a significant association with RA susceptibility. The frequencies of rs6693831 genotype CC and allele C were significantly higher in the RA group and associated with higher RA risk compared with genotype TT and allele T (OR = 7.797, 95% confidence interval [CI] = 4.072-14.932 and OR = 5.984, 95%CI = 3.190-11.224, respectively). The TT genotype of rs1884444 appeared to decrease the RA risk compared with the GG genotype (OR = .251, 95%CI = .118-.536). The genotype CC and allele C of rs6693831 and the genotype GG and allele G of rs1884444 may be risk factors for RA. IL23R gene polymorphisms may be involved in the risk of RA susceptibility in the Western Chinese Han population.
Assuntos
Artrite Reumatoide , Predisposição Genética para Doença , Humanos , Genótipo , Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único , China , Interleucina-23/genética , Estudos de Casos e Controles , Frequência do GeneRESUMO
The overexpression of interleukin-17A (IL-17A) is closely associated with the pathogenesis of autoimmune diseases and cancer, rendering precise identification of IL-17A level critical for disease diagnosis and prognosis monitoring. In this study, CsPbBr3 nanoclusters (NCs) were embedded in C16H14Br2O6Pb2 organometallic compound (Pb-MA MOC) via a hot injection approach. Through this way, the issue of CsPbBr3 NCs susceptible to decomposition in water was solved, and the photocurrent intensity that is generated by CsPbBr3 was significantly enhanced. A highly sensitive photoelectrochemical (PEC) sensor for detecting IL-17A in human serum was developed using CsPbBr3/Pb-MA as the photoactive material. The electrode was initially modified with CsPbBr3/Pb-MA. Then, antibody-modified Fe3O4 magnetic nanoparticles (MNs) with target analyte IL-17A captured, and IL-17A antibody-modified Au@CuNi diatomic catalyst (DAC) formed sandwich immune complex structure on the electrode. The existence of CuNi DAC led to a substantial reduction in photoelectric signal intensity due to oxidation of ascorbic acid in the supporting electrolyte. The photocurrent intensity exhibited linear correlation with IL-17A concentration within the range 15-750 pg/mL, and achieving an impressive detection limit of 1 pg/mL. Moreover, the sensor was successfully applied to the determination of IL-17A in human serum, suggesting its potential clinical applications.
Assuntos
Técnicas Eletroquímicas , Interleucina-17 , Limite de Detecção , Compostos Organometálicos , Óxidos , Titânio , Humanos , Interleucina-17/sangue , Interleucina-17/imunologia , Técnicas Eletroquímicas/métodos , Titânio/química , Óxidos/química , Imunoensaio/métodos , Compostos Organometálicos/química , Compostos de Cálcio/química , Técnicas Biossensoriais/métodos , Processos Fotoquímicos , Anticorpos Imobilizados/imunologia , Nanopartículas de Magnetita/química , Ouro/química , EletrodosRESUMO
BACKGROUND: Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. OBJECTIVE: We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells. METHODS: We performed single-cell RNA sequencing of relapsing and resolved psoriatic lesions with analysis for validation data set of psoriasis. Mice with systemic and conditional depletion of Peli1 were generated to evaluate the role of Peli1 in imiquimod-induced psoriasiform dermatitis. Pharmacologic inhibition of Peli1 in human CD4+ T cells and ex vivo human skin cultures was also examined to evaluate its potential therapeutic implications. RESULTS: Single-cell RNA sequencing analysis revealed distinct T-cell subsets in relapsing psoriasis exhibiting highly enriched gene signatures for (1) tissue-resident T cells, (2) T17 cells, and (3) NF-κB signaling pathway including PELI1. Peli1-deficient mice were profoundly protected from psoriasiform dermatitis, with reduced IL-17A production and NF-κB activation in γδ T17 cells. Mice with conditional depletion of Peli1 treated with FTY720 revealed that Peli1 was intrinsically required for the skin-resident T17 cell immune responses. Notably, pharmacologic inhibition of Peli1 significantly ameliorated murine psoriasiform dermatitis and IL-17A production from the stimulated human CD4+ T cells and ex vivo skin explants modeling psoriasis. CONCLUSION: Targeting Peli1 would be a promising therapeutic strategy for psoriasis by limiting skin-resident T17 cell immune responses.
Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Interleucina-17 , NF-kappa B/metabolismo , Pele , Modelos Animais de Doenças , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
Spondyloarthritis (SpA) is a group of rheumatic diseases that includes ankylosing spondylitis (AS), psoriatic arthritis (PsA) and a number of other diseases. SpA lead to a significant social problem, since it is a common pathology that debuts mainly at a young age, significantly impairing the ability to work and the ability to social contacts of the most active part of the population. For all the main types of chronic progressive SpA, biological agents (biologics) are of great importance in patients with persistent activity despite standard treatment, especially in the case of predominantly axial involvement, since in this case it is actually the only option for effective treatment, in addition to the constant use of non-steroidal anti-inflammatory drugs (NSAIDs). Over the past decade, interleukin-17A (IL-17A) inhibitors have taken the first place in therapy of SpA, because, according to modern ideas about pathogenesis, IL-17A may be a key target for therapeutic intervention in SpA. In terms of ensuring availability for Russian patients with SpA, it is of particular importance to the introduction of the original medication from the group of IL-17A inhibitors Netakimab (NTK). This review presents data from randomized clinical trials of NTK phases I, II and III in AS and PsA also post-registration observational studies of phase IV, including analysis of subpopulations of patients of special interest, in particular, patients with psoriatic spondylitis. NTK demonstrated high effectiveness in the treatment of SpA both in randomized clinical trials and in clinical practice. The drug is characterized by a rapid onset of clinical action and persistent maintenance of the achieved improvement, a complex effect on various manifestations of the disease, is able to have a structure-modifying effect and slow down the progression of both the erosive process and osteoproliferation. The safety profile of NTK is generally typical for the entire group of IL-17 inhibitors. The drug has low immunogenicity, which allows us to count on the possibility of many years of effective use. Resolutions of expert councils on the use of NTK in AS and PsA support the inclusion of this drug in clinical guidelines.
Assuntos
Anticorpos Monoclonais Humanizados , Interleucina-17 , Espondilartrite , Humanos , Interleucina-17/antagonistas & inibidores , Espondilartrite/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Resultado do Tratamento , Espondilite Anquilosante/tratamento farmacológicoRESUMO
Recent studies have found that the coexistence of fungi and bacteria in the airway may increase the risk of infection, contribute to the development of pneumonia, and increase the severity of disease. Interleukin 17A (IL-17A) plays important roles in host resistance to bacterial and fungal infections. The objective of this study was to determine the effects of IL-17A on Acinetobacter baumannii-infected rats with a previous Candida albicans airway inoculation. The incidence of A. baumannii pneumonia was higher in rats with C. albicans in the airway than in noninoculated rats, and it decreased when amphotericin B was used to clear C. albicans, which influenced IL-17A levels. IL-17A had a protective effect in A. baumannii pneumonia associated with C. albicans in the airway. Compared with A. baumannii-infected rats with C. albicans in the airway that did not receive IL-17A, recombinant IL-17A (rIL-17A) supplementation decreased the incidence of A. baumannii pneumonia (10/15 versus 5/17; P = 0.013) and the proportion of neutrophils in the lung (84 ± 3.5 versus 74 ± 4.3%; P = 0.033), reduced tissue destruction and inflammation, and decreased levels of myeloperoxidase (MPO) (1.267 ± 0.15 versus 0.233 ± 0.06 U/g; P = 0.0004), reactive oxygen species (ROS) (132,333 ± 7,505 versus 64,667 ± 10,115 AU; P = 0.0007) and lactate dehydrogenase (LDH) (2.736 ± 0.05 versus 2.1816 ± 0.29 U/g; P = 0.0313). In vitro experiments revealed that IL-17A had no significant effect on the direct migration ability and bactericidal capability of neutrophils. However, IL-17A restrained lysis cell death and increased apoptosis of neutrophils (2.9 ± 1.14 versus 7 ± 0.5%; P = 0.0048). Taken together, our results suggest that C. albicans can depress IL-17A levels, which when supplemented may have a regulatory function that limits the accumulation of neutrophils in inflammatory areas, providing inflammatory response homeostasis.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Pneumonia Bacteriana , Pneumonia , Ratos , Animais , Candida albicans/metabolismo , Interleucina-17/metabolismo , Acinetobacter baumannii/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , Bactérias/metabolismoRESUMO
IL-17A-producing group 3 innate lymphoid cells (ILC3s) have been found to participate in the development of various phenotypes of asthma, however, little is known about how ILC3s mediate neutrophilic airway inflammation. Elevated IL-1ß has been reported in neutrophilic asthma (NA) and IL-1ß receptor is highly expressed on lung ILC3s. Therefore, we hypothesize that IL-1ß aggravates neutrophilic airway inflammation via provoking IL-17A-producing ILC3s. We sought to determine the pathological roles of the IL-1ß-ILC3-IL-17A axis in neutrophilic airway inflammation. Lung ILC subsets were measured in eosinophilic asthma (ovalbumin [OVA]/Alum) and NA (OVA/lipopolysaccharides [LPS]) murine models. Rag2-/- (lacking adaptive immunity), RORc-/- (lacking transcription factor RORγt), Rag2-/- RORc-/- (lacking adaptive immunity and ILC3s), and ILCs depletion mice were used to verify the roles of ILC3s in neutrophilic airway inflammation by measurement of CXCL-1, IL-17A, IL-22 and neutrophil counts in bronchoalveolar lavage fluid (BALF), detection of Muc5ac in lung tissues, and quantification of IL-17A-producing ILC3s after treatment of anti-IL-17A or recombinant IL-1ß (rIL-1ß) and its monoclonal antibody. NLRP3, Caspase 1 and their induction of IL-1ß were detected in lung tissues of OVA/LPS-induced mice. The OVA/LPS model was characterized by an enrichment of airway neutrophilia, lung RORγt+ ILC3s and Th17 cytokines (IL-17A and IL-22) and neutrophilic chemokine C-X-C motif (chemokine) ligand 1 (CXCL-1), compared to the phenotypic features of airway eosinophilia, GATA3+ ILC2s and type-2 cytokines in OVA/Alum model. The concentration of CXCL-1 and neutrophil counts in BALF were decreased by anti-IL-17A. RORγt deficiency led to a decrease in IL-17A and CXCL-1 levels and neutrophil counts in BALF. ILC depletion in Rag2-/- mice ameliorated OVA/LPS-induced IL-17A, IL-22, CXCL-1 and airway neutrophil counts. IL-17A-producing ILCs and BALF neutrophil counts were significantly lower in Rag2-/- RORc-/- mice than those in Rag2-/- mice. IL-1ß was highly expressed in BALF and bronchial epithelial cells (BECs) in OVA/LPS model, and administration of rIL-1ß substantially aggravated airway inflammation and promoted upregulation of RORγt+ and IL-17A-producing lung ILC3s, which were reversed by anti-IL-1ß. NLRP3 and Caspase 1 expressions were enhanced by OVA/LPS, and their inhibitors abolished the OVA/LPS-induced IL-1ß in BECs. ILC3s play a pathogenic role in the pathogenesis of NA, which is triggered by IL-1ß via promoting IL-17A production of lung ILC3s.
RESUMO
Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day × 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and nuclear factor-kappa B (NF-κB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1ß, and NF-κB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1ß, and NF-κB within the lung.