Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930853

RESUMO

Ion-molecular reactions play a significant role in molecular evolution within the interstellar medium. In this study, the entrance channel reaction, H3+ + C2H4 → H2 + C2H5+, was investigated using classical molecular dynamic (classical MD) and ring polymer molecular dynamic (RPMD) simulation techniques. We developed an analytical potential energy surface function with a permutationally invariant polynomial basis, specifically employing the monomial symmetrized approach. Our dynamic simulations reproduced the rate coefficient of 300 K for H3+ + C2H4 → H2 + C2H5+, aligning reasonably well with the values in the kinetic database commonly utilized in astrochemistry. The thermal rate coefficients obtained using both the classical MD and RPMD techniques exhibited an increase from 100 K to 300 K as the temperature rose. Additionally, we analyzed the excess energy distribution of the C2H5+ fragment with respect to temperature to investigate the indirect reaction pathway of C2H5+ → H2 + C2H3+. This result suggests that the indirect reaction pathway of C2H5+ → H2 + C2H3+ holds minor significance, although the distribution highly depends on the collisional temperature.

2.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398562

RESUMO

The gas-phase reaction between the ethyl cation (C2H5+) and ethyne (C2H2) is re-investigated by measuring absolute reactive cross sections (CSs) and branching ratios (BRs) as a function of collision energy, in the thermal and hyperthermal energy range, via tandem-guided ion beam mass spectrometry under single collision conditions. Dissociative photoionization of C2H5Br using tuneable VUV radiation in the range 10.5-14.0 eV is employed to generate C2H5+, which has also allowed us to explore the impact of increasing (vibrational) excitation on the reactivity. Reactivity experiments are complemented by theoretical calculations, at the G4 level of theory, of the relative energies and structures of the most relevant stationary points on the reactive potential energy hypersurface (PES) and by mass-analyzed ion kinetic energy (MIKE) spectrometry experiments to probe the metastable decomposition from the [C4H7]+ PES and elucidate the underlying reaction mechanisms. Two main product channels have been identified at a centre-of-mass collision energy of ∼0.1 eV: (a) C3H3++CH4, with BR = 0.76±0.05 and (b) C4H5++H2, with BR = 0.22±0.02. A third channel giving C2H3+ in association with C2H4 is shown to emerge at both high internal excitation of C2H5+ and high collision energies. From CS measurements, energy-dependent total rate constants in the range 4.3×10-11-5.2×10-10 cm3·molecule-1·s-1 have been obtained. Theoretical calculations indicate that both channels stem from a common covalently bound intermediate, CH3CH2CHCH+, from which barrierless and exothermic pathways exist for the production of both cyclic c-C3H3+ and linear H2CCCH+ isomers of the main product channel. For the minor C4H5+ product, two isomers are energetically accessible: the three-member cyclic isomer c-C3H2(CH3)+ and the higher energy linear structure CH2CHCCH2+, but their formation requires multiple isomerization steps and passages via transition states lying only 0.11 eV below the reagents' energy, thus explaining the smaller BR. Results have implications for the modeling of hydrocarbon chemistry in the interstellar medium and the atmospheres of planets and satellites as well as in laboratory plasmas (e.g., plasma-enhanced chemical vapor deposition of carbon nanotubes and diamond-like carbon films).

3.
Astron Astrophys Rev ; 31(1): 4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115816

RESUMO

Understanding the physical mechanisms that control galaxy formation is a fundamental challenge in contemporary astrophysics. Recent advances in the field of astrophysical feedback strongly suggest that cosmic rays (CRs) may be crucially important for our understanding of cosmological galaxy formation and evolution. The appealing features of CRs are their relatively long cooling times and relatively strong dynamical coupling to the gas. In galaxies, CRs can be close to equipartition with the thermal, magnetic, and turbulent energy density in the interstellar medium, and can be dynamically very important in driving large-scale galactic winds. Similarly, CRs may provide a significant contribution to the pressure in the circumgalactic medium. In galaxy clusters, CRs may play a key role in addressing the classic cooling flow problem by facilitating efficient heating of the intracluster medium and preventing excessive star formation. Overall, the underlying physics of CR interactions with plasmas exhibit broad parallels across the entire range of scales characteristic of the interstellar, circumgalactic, and intracluster media. Here we present a review of the state-of-the-art of this field and provide a pedagogical introduction to cosmic ray plasma physics, including the physics of wave-particle interactions, acceleration processes, CR spatial and spectral transport, and important cooling processes. The field is ripe for discovery and will remain the subject of intense theoretical, computational, and observational research over the next decade with profound implications for the interpretation of the observations of stellar and supermassive black hole feedback spanning the entire width of the electromagnetic spectrum and multi-messenger data.

4.
Chemistry ; 29(37): e202203570, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36794765

RESUMO

Gas-phase solvation of halides by 1,3-butadiene has been studied via a combination of photoelectron spectroscopy and density functional theory. Photoelectron spectra for X- ⋯(C4 H6 )n (X=Cl, Br, I where n=1-3, 1-3 and 1-7 respectively) are presented. For all complexes, the calculated structures indicate that butadiene is bound in a bidentate fashion through hydrogen-bonding, with the chloride complex showing the greatest degree of stabilisation of the internal C-C rotation of cis-butadiene. In both Cl- and Br- complexes, the first solvation shell is shown to be at least n = 4 ${n = 4}$ from the vertical detachment energies (VDEs), however for I- , increases in the VDE may suggest a metastable, partially filled, first solvation shell for n = 4 ${n = 4}$ and a complete shell at n = 6 ${n = 6}$ . These results have implications for gas-phase clustering in atmospheric and extraterrestrial environments.

5.
Chemphyschem ; 24(10): e202200939, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36744394

RESUMO

In the interstellar medium, the H2 adsorption and desorption on the solid water ice are crucial for chemical and physical processes. We have recently investigated the probabilities of H2 sticking on the (H2 O)8 ice, which has quadrilateral surfaces. We have extended the previous work using classical MD and ring-polymer molecular dynamics (RPMD) simulations to the larger ice clusters, (H2 O)10 and (H2 O)12 , which have pentagonal and hexagonal surfaces, respectively. The H2 sticking probabilities decreased as the temperature increased for both cluster cases, whereas the cluster-size-independent profiles were observed. It is thought that the size independence of the probabilities is qualitatively understood from the similar binding energies for all the three cluster systems. Furthermore, the RPMD sticking probabilities are smaller than the classical ones because of the reduction in the binding energies owing to nuclear quantum effects, such as vibrational quantization.

6.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049694

RESUMO

We present here an analysis of several possible reactive pathways toward the formation of hydroxylamine under astrochemical conditions. The analysis is based on ab initio quantum chemistry calculations. Twenty-one bimolecular ion-molecule reactions have been studied and their thermodynamics presented. Only one of these reactions is a viable direct route to hydroxylamine. We conclude that the contribution of gas-phase chemistry to hydroxylamine formation is probably negligible when compared to its formation via surface grain chemistry. However, we have found several plausible gas-phase reactions whose outcome is the hydroxylamine cation.

7.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764314

RESUMO

We evaluate the accuracy of CCSD(T) and density functional theory (DFT) methods for the calculation of equilibrium rotational constants (Ae, Be, and Ce) for four experimentally detected low-lying C5H2 isomers (ethynylcyclopropenylidene (2), pentatetraenylidene (3), ethynylpropadienylidene (5), and 2-cyclopropen-1-ylidenethenylidene (8)). The calculated rotational constants are compared to semi-experimental rotational constants obtained by converting the vibrationally averaged experimental rotational constants (A0, B0, and C0) to equilibrium values by subtracting the vibrational contributions (calculated at the B3LYP/jun-cc-pVTZ level of the theory). The considered isomers are closed-shell carbenes, with cumulene, acetylene, or strained cyclopropene moieties, and are therefore highly challenging from an electronic structure point of view. We consider both frozen-core and all-electron CCSD(T) calculations, as well as a range of DFT methods. We find that calculating the equilibrium rotational constants of these C5H2 isomers is a difficult task, even at the CCSD(T) level. For example, at the all-electron CCSD(T)/cc-pwCVTZ level of the theory, we obtain percentage errors ≤0.4% (Ce of isomer 3, Be and Ce of isomer 5, and Be of isomer 8) and 0.9-1.5% (Be and Ce of isomer 2, Ae of isomer 5, and Ce of isomer 8), whereas for the Ae rotational constant of isomers 2 and 8 and Be rotational constant of isomer 3, high percentage errors above 3% are obtained. These results highlight the challenges associated with calculating accurate rotational constants for isomers with highly challenging electronic structures, which is further complicated by the need to convert vibrationally averaged experimental rotational constants to equilibrium values. We use our best CCSD(T) rotational constants (namely, ae-CCSD(T)/cc-pwCVTZ for isomers 2 and 5, and ae-CCSD(T)/cc-pCVQZ for isomers 3 and 8) to evaluate the performance of DFT methods across the rungs of Jacob's Ladder. We find that the considered pure functionals (BLYP-D3BJ, PBE-D3BJ, and TPSS-D3BJ) perform significantly better than the global and range-separated hybrid functionals. The double-hybrid DSD-PBEP86-D3BJ method shows the best overall performance, with percentage errors below 0.5% in nearly all cases.

8.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959873

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous interstellar molecules. However, the formation mechanisms of PAHs and even the simplest cyclic aromatic hydrocarbon, benzene, are not yet fully understood. Recently, we reported the statistical and dynamical properties in the reaction mechanism of Fe+-catalyzed acetylene cyclotrimerization, whereby three acetylene molecules are directly converted to benzene. In this study, we extended our previous work and explored the possible role of the complex of other 3d transition metal cations, TM+ (TM = Sc, Ti, Mn, Co, and Ni), as a catalyst in acetylene cyclotrimerization. Potential energy profiles for bare TM+-catalyst (TM = Sc and Ti), for TM+NC--catalyst (TM = Sc, Ti, Mn, Co, and Ni), and for TM+-(H2O)8-catalyst (TM = Sc and Ti) systems were obtained using quantum chemistry calculations, including the density functional theory levels. The calculation results show that the scandium and titanium cations act as efficient catalysts in acetylene cyclotrimerization and that reactants, which contain an isolated acetylene and (C2H2)2 bound to a bare (ligated) TM cation (TM = Sc and Ti), can be converted into a benzene-metal-cation product complex without an entrance barrier. We found that the number of electrons in the 3d orbitals of the transition metal cation significantly contributes to the catalytic efficiency in the acetylene cyclotrimerization process. On-the-fly Born-Oppenheimer molecular dynamics (BOMD) simulations of the Ti+-NC- and Ti+-(H2O)8 complexes were also performed to comprehensively understand the nuclear dynamics of the reactions. The computational results suggest that interstellar benzene can be produced via acetylene cyclotrimerization reactions catalyzed by transition metal cation complexes.

9.
Angew Chem Int Ed Engl ; 62(6): e202216972, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524679

RESUMO

The simplest polycyclic aromatic hydrocarbon (PAH) carrying a five-membered ring-9H-fluorene (C13 H10 )-is produced isomer-specifically in the gas phase by reacting benzyl (C7 H7 ⋅) with phenyl (C6 H5 ⋅) radicals in a pyrolytic reactor coupled with single photon ionization mass spectrometry. The unconventional mechanism of reaction is supported by theoretical calculations, which first produces diphenylmethane and unexpected 1-(6-methylenecyclohexa-2,4-dienyl)benzene intermediates (C13 H12 ) accessed via addition of the phenyl radical to the ortho position of the benzyl radical. These findings offer convincing evidence for molecular mass growth processes defying conventional wisdom that radical-radical reactions are initiated through recombination at their radical centers. The structure of 9H-fluorene acts as a molecular building block for complex curved nanostructures like fullerenes and nanobowls providing fundamental insights into the hydrocarbon evolution in high temperature settings.

10.
Chemphyschem ; 23(22): e202200403, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35962978

RESUMO

Organic molecules are a potential source of prebiotic chemistry in the interstellar medium (ISM). Methanol (MetOH) is a very important source of more complex molecules. H3 O+ (aq) and Cl- (aq) are fundamental to living organisms and can be generated in the ISM from the dissociation of HCl with just four water molecules, yielding the (H3 O)+ (H2 O)3 Cl- ion-pair. Here, a detailed mechanism, based on density functional theory (DFT) and ab-initio (2nd order Mϕller-Plesset perturbation theory, MP2) calculations, is suggested for the substitution reactions of these water molecules by MetOH. The time required for formation of an appreciable amount of the product ((H3 O)+ (MetOH)3 Cl- ) can be only few years. Such reaction can take place in Sagittarius B2, where HCl, H2 O and MetOH have already been identified and it can be an important source for the formation of more complex prebiotic structures.


Assuntos
Metanol , Água
11.
Proc Natl Acad Sci U S A ; 116(5): 1526-1531, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30630945

RESUMO

Clathrate hydrates (CHs) are ubiquitous in earth under high-pressure conditions, but their existence in the interstellar medium (ISM) remains unknown. Here, we report experimental observations of the formation of methane and carbon dioxide hydrates in an environment analogous to ISM. Thermal treatment of solid methane and carbon dioxide-water mixture in ultrahigh vacuum of the order of 10-10 mbar for extended periods led to the formation of CHs at 30 and 10 K, respectively. High molecular mobility and H bonding play important roles in the entrapment of gases in the in situ formed 512 CH cages. This finding implies that CHs can exist in extreme low-pressure environments present in the ISM. These hydrates in ISM, subjected to various chemical processes, may act as sources for relevant prebiotic molecules.

12.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(6): 227-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35691845

RESUMO

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.


Assuntos
Meteoroides , Sistema Solar , Água
13.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431867

RESUMO

Benzene is the simplest building block of polycyclic aromatic hydrocarbons and has previously been found in the interstellar medium. Several barrierless reaction mechanisms for interstellar benzene formation that may operate under low-temperature and low-pressure conditions in the gas phase have been proposed. In this work, we studied different mechanisms for interstellar benzene formation based on acetylene cyclotrimerization catalyzed by Fe+ bound to solid water clusters through quantum chemistry calculations. We found that benzene is formed via a single-step process with one transition state from the three acetylene molecules on the Fe+(H2O)n (n = 1, 8, 10, 12 and 18) cluster surface. Moreover, the obtained mechanisms differed from those of single-atom catalysis, in which benzene is sequentially formed via multiple steps.

14.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630577

RESUMO

To be detectable in space via radio astronomy, molecules should have a permanent dipole moment. This is the plausible reason why HCnH chains are underproportionally represented in the interstellar medium in comparison with the isoelectronically equivalent HCnN chain family, which is the most numerous homologous series astronomically observed so far. In this communication, we present results of quantum chemical calculations for the HCnH family at several levels of theory: density functional theory (DFT/B3LYP), coupled-cluster expansions (ROCCSD(T)), and G4 composite model. Contradicting previous studies, we report here that linear HCnH- anion chains with sizes of astrochemical interest are unstable (i.e., not all calculated frequencies are real). Nonlinear cis and trans HCnH- anion chains turn out to be stable both against molecular vibrations (i.e., all vibrational frequencies are real) and against electron detachment (i.e., positive electroaffinity). The fact that the cis anion conformers possess permanent dipole is the main encouraging message that this study is aiming at conveying to the astrochemical community, as this makes them observable by means of radio astronomy.


Assuntos
Astronomia , Vibração , Ânions , Elétrons , Modelos Moleculares
15.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443370

RESUMO

Polyaromatic hydrocarbons (PAHs) are widespread in the interstellar medium (ISM). The abundance and relevance of PAHs call for a clear understanding of their formation mechanisms, which, to date, have not been completely deciphered. Of particular interest is the formation of benzene, the basic building block of PAHs. It has been shown that the ionization of neutral clusters can lead to an intra-cluster ionic polymerization process that results in molecular growth. Ab-initio molecular dynamics (AIMD) studies in clusters consisting of 3-6 units of acetylene modeling ionization events under ISM conditions have shown maximum aggregation of three acetylene molecules forming bonded C6H6+ species; the larger the number of acetylene molecules, the higher the production of C6H6+. These results lead to the question of whether clusters larger than those studied thus far promote aggregation beyond three acetylene units and whether larger clusters can result in higher C6H6+ production. In this study, we report results from AIMD simulations modeling the ionization of 10 and 20 acetylene clusters. The simulations show aggregation of up to four acetylene units producing bonded C8H8+. Interestingly, C8H8+ bicyclic species were identified, setting a precedent for their astrochemical identification. Comparable reactivity rates were shown with 10 and 20 acetylene clusters.

16.
Angew Chem Int Ed Engl ; 60(46): 24461-24466, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496111

RESUMO

The large amount of unstable species in the realm of interstellar chemistry drives an urgent need to develop efficient methods for the in situ generations of molecules that enable their spectroscopic characterizations. Such laboratory experiments are fundamental to decode the molecular universe by matching the interstellar and terrestrial spectra. We propose an approach based on laser ablation of nonvolatile solid organic precursors. The generated chemical species are cooled in a supersonic expansion and probed by high-resolution microwave spectroscopy. We present a proof of concept through a simultaneous formation of interstellar compounds and the first generation of aminocyanoacetylene using diaminomaleonitrile as a prototypical precursor. With this micro-laboratory, we open the door to generation of unsuspected species using precursors not typically accessible to traditional techniques such as electric discharge and pyrolysis.

17.
Angew Chem Int Ed Engl ; 59(28): 11334-11338, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266773

RESUMO

A representative, low-temperature gas-phase reaction mechanism synthesizing polyacenes via ring annulation exemplified by the formation of pentacene (C22 H14 ) along with its benzo[a]tetracene isomer (C22 H14 ) is unraveled by probing the elementary reaction of the 2-tetracenyl radical (C18 H11 . ) with vinylacetylene (C4 H4 ). The pathway to pentacene-a prototype polyacene and a fundamental molecular building block in graphenes, fullerenes, and carbon nanotubes-is facilitated by a barrierless, vinylacetylene mediated gas-phase process thus disputing conventional hypotheses that synthesis of polycyclic aromatic hydrocarbons (PAHs) solely proceeds at elevated temperatures. This low-temperature pathway can launch isomer-selective routes to aromatic structures through submerged reaction barriers, resonantly stabilized free-radical intermediates, and methodical ring annulation in deep space eventually changing our perception about the chemistry of carbon in our universe.

18.
Angew Chem Int Ed Engl ; 59(10): 4051-4058, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31872513

RESUMO

A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes-polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings-is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry.

19.
Chemphyschem ; 20(6): 791-797, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30710434

RESUMO

For the last decades, the hydrogen-abstraction-acetylene-addition (HACA) mechanism has been widely invoked to rationalize the high-temperature synthesis of PAHs as detected in carbonaceous meteorites (CM) and proposed to exist in the interstellar medium (ISM). By unravelling the chemistry of the 9-phenanthrenyl radical ([C14 H9 ]. ) with vinylacetylene (C4 H4 ), we present the first compelling evidence of a barrier-less pathway leading to a prototype tetracyclic PAH - triphenylene (C18 H12 ) - via an unconventional hydrogen abstraction-vinylacetylene addition (HAVA) mechanism operational at temperatures as low as 10 K. The barrier-less, exoergic nature of the reaction reveals HAVA as a versatile reaction mechanism that may drive molecular mass growth processes to PAHs and even two-dimensional, graphene-type nanostructures in cold environments in deep space thus leading to a better understanding of the carbon chemistry in our universe through the untangling of elementary reactions on the most fundamental level.

20.
Philos Trans A Math Phys Eng Sci ; 377(2154): 20180400, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31378174

RESUMO

Spectroscopy of absorption lines of H3+ in the central molecular zone (CMZ) of the Galaxy show that a previously largely unknown component of the interstellar medium there, warm (T∼200 K) and diffuse (n ≲ 102 cm-3) gas, makes up a large fraction of the volume of the CMZ, and that this gas is moving radially outward from the centre. These discoveries upend the generally accepted understanding that the interstellar environment of the CMZ comprises almost entirely an ultra-hot plasma and dense molecular clouds. The radial momentum associated with the diffuse gas in the CMZ exceeds that of the ejecta of thousands of core-collapse supernovae and implies some extraordinary past activity in the centre, possibly associated with the supermassive black hole, Sgr A*. We speculate that within approximately 106 years, gravity could halt the expansion of the diffuse gas and that contraction towards the centre could then commence. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA