Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Pediatr Surg Int ; 39(1): 80, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631569

RESUMO

PURPOSE: Nowadays, the standard therapy for patients with short bowel syndrome is parenteral nutrition (PN). Various growth factors have been tested to achieve weaning from prolonged PN administration. We evaluated the effect of hepatocyte growth factor (HGF) on structural intestinal adaptation and cell proliferation in a rat model of SBS. METHODS: Thirty Sprague-Dawley rats were divided into three groups; group A rats (sham) underwent bowel transection, group B rats underwent a 75% bowel resection, and group C rats underwent the same procedure but were treated postoperatively with HGF. Histopathologic parameters of intestinal adaptation were determined, while microarray and rt-PCR analyses of ileal RNA were also performed. RESULTS: Treatment with HGF resulted in significant increase in body weight, while the jejunal and ileal villus height and crypt depth were increased in HGF rats (36%, p < 0.05 and 27%, p < 0.05 respectively). Enterocyte proliferation was also significantly increased in HGF rats (21% p < 0.05). Microarray and quantitative rt-PCR analyses showed that the genes hgfac, rac 1, cdc42, and akt 1 were more than twofold up-regulated after HGF treatment. CONCLUSION: HGF emerges as a growth factor that enhances intestinal adaptation. The future use of HGF may potentially reduce the requirement for PN in SBS patients.


Assuntos
Adaptação Fisiológica , Fator de Crescimento de Hepatócito , Síndrome do Intestino Curto , Animais , Ratos , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/uso terapêutico , Mucosa Intestinal/metabolismo , Intestinos/patologia , Modelos Teóricos , Ratos Sprague-Dawley , Síndrome do Intestino Curto/tratamento farmacológico , Síndrome do Intestino Curto/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G154-G168, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816756

RESUMO

Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Stool and sera were collected from healthy controls and from patients with SBS (n = 52) with ileostomy, jejunostomy, ileocolonic, and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling, and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS and serum amino acid analyses. Patients with SBS exhibited altered gut microbiota with reduced gut microbial diversity compared with healthy controls. We observed differences in the microbiomes of patients with SBS with ileostomy versus jejunostomy, jejunocolonic versus ileocolonic anastomoses, and PN dependence compared with those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in patients with SBS, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who were weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic aicd. Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select patients with SBS, promoting the ability to wean from PN. Proadaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.NEW & NOTEWORTHY Loss of intestinal surface area causes short bowel syndrome, intestinal failure, and parenteral nutrition dependence. We analyzed the gut microbiota and bile acid metabolome of a large cohort of short bowel syndrome adult patients with different postsurgical anatomies. We report a novel analysis of the microbiome of patients with ileostomy and jejunostomy. Enrichment of specific microbial and bile acid species may be associated with the ability to wean from parenteral nutrition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , RNA Ribossômico 16S/metabolismo , Síndrome do Intestino Curto/metabolismo , Adaptação Fisiológica/fisiologia , Cromatografia Líquida , Microbioma Gastrointestinal/fisiologia , Humanos , Intestino Delgado/metabolismo , Metaboloma/fisiologia , Microbiota/fisiologia
3.
J Surg Res ; 273: 100-109, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35033819

RESUMO

BACKGROUND: Murine ileocecal resection (ICR) has been used to investigate intestinal adaptation. The established model often includes the sacrifice of significant length of the proximal colon. Here, we optimized a highly selective vascular approach to the ICR, with primary jejunal-colic anastomosis yielding maximal colonic preservation. MATERIALS AND METHODS: Forty C57BL/6 mice underwent a highly vascularly selective ICR. The terminal branches of the ileocecal artery are isolated apart from the mesenteric branches supplying the small bowel to be resected. The distal 50% of small bowel and cecum are resected; a primary jejuno-colonic anastomosis is performed. Animals were sacrificed at postoperative weeks 2 (n = 10) and 10 (n = 29). Proximal 50% small bowel resection (SBR) with jejuno-ileal anastomosis was also performed for comparison. RESULTS: The entire colon (with exception of the cecum) was preserved in 100% of animals. Ninety-seven percent of animals survived to postoperative week 10, and all exhibited structural adaptation in the remnant small intestine epithelium. Crypts deepened by 175%, and villi lengthened by 106%, versus 39% and 29% in the proximal SBR cohort, respectively. Colonic proliferation, structural adaptation, and functional adaptation (measured by p-histone 3, luminal-facing apical crypt border size, and sucrase isomaltase, respectively) were increased in ICR compared with proximal SBR. CONCLUSIONS: Highly selective isolation of the cecal vasculature allows for greater colon preservation and yields enhanced remnant intestine epithelial adaptation. ICR is also associated with greater colonic adaptation and unique plasticity toward an intestinal phenotype. These findings underscore major differences between resection sites and offer insights into the critical adaptive mechanisms in response to massive intestinal loss.


Assuntos
Intestino Delgado , Síndrome do Intestino Curto , Adaptação Fisiológica/fisiologia , Animais , Colo/cirurgia , Humanos , Mucosa Intestinal , Intestino Delgado/fisiologia , Intestino Delgado/cirurgia , Jejuno/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Intestino Curto/cirurgia
4.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G136-G152, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237796

RESUMO

Bowel resection accelerates enterocyte proliferation in the remaining gut with suboptimal absorptive and digestive capacity because of a proliferation-associated decrease in functional differentiation markers. We hypothesized that although schlafen 3 (Slfn3) is an important regulator of enterocytic differentiation, Slfn3 would have less impact on bowel resection adaptation, where accelerated proliferation takes priority over differentiation. We assessed proliferation, cell shedding, and enterocyte differentiation markers from resected and postoperative bowel of wild-type (WT) and Slfn3-knockout (Slfn3KO) mice. Villus length and crypt depth were increased in WT mice and were even longer in Slfn3KO mice. Mitotic marker, Phh3+, and the proliferation markers Lgr5, FoxL1, and platelet-derived growth factor-α (PDGFRα) were increased after resection in male WT, but this was blunted in male Slfn3KO mice. Cell-shedding regulators Villin1 and TNFα were downregulated in female mice and male WT mice only, whereas Gelsolin and EGFR increased expression in all mice. Slfn3 expression increased after resection in WT mice, whereas other Slfn family members 1, 2, 5, 8, and 9 had varied expressions that were affected also by sex difference and loss of Slfn3. Differentiation markers sucrase isomaltase, Dpp4, Glut2, and SGLT1 were all decreased, suggesting that enterocytic differentiation effort is incompatible with rapid proliferation shift in intestinal adaptation. Slfn3 absence potentiates villus length and crypt depth, suggesting that the differentiating stimulus of Slfn3 signaling may restrain mucosal mass increase through regulating Villin1, Gelsolin, EGFR, TNFα, and proliferation markers. Therefore, Slfn3 may be an important regulator not only of "normal" enterocytic differentiation but also in response to bowel resection.NEW & NOTEWORTHY The differentiating stimulus of Slfn3 signaling restrains an increase in mucosal mass after bowel resection, and there is a Slfn3-sex interaction regulating differentiation gene expression and intestinal adaptation. This current study highlights the combinatory effects of gender and Slfn3 genotype on the gene expression changes that contribute to the adaptation in intestinal cellular milleu (i.e. villus and crypt structure) which are utilized to compensate for the stress-healing response that the animals display in intestinal adaptation.


Assuntos
Anastomose em-Y de Roux , Proteínas de Ciclo Celular/metabolismo , Animais , Biomarcadores , Proteínas de Ciclo Celular/genética , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Masculino , Camundongos Knockout , RNA/genética , RNA/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores Sexuais , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
5.
Annu Rev Nutr ; 40: 299-321, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32631145

RESUMO

Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.


Assuntos
Adaptação Fisiológica , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Síndrome do Intestino Curto/metabolismo , Dieta , Humanos , Enteropatias/cirurgia
6.
Biochem Biophys Res Commun ; 523(3): 645-650, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31941599

RESUMO

Vitamin D deficiency and refractory osteoporosis are common complications in patients with short bowel syndrome (SBS). The symptom of bone loss is not effectively alleviated, even after the oral administration of vitamin D in SBS patients who had been weaned off parenteral nutrition. In this study, we aimed to investigate the effect of propionate on the expression of the vitamin D receptor (VDR) in the small intestine of rats with SBS. Firstly, IEC-6 (intestinal epithelioid cell line No. 6) cells were incubated in vitro with 1 mM sodium propionate for 24 h. This resulted in a significant increase in the expression of VDR and yes-associated protein (YAP) compared with that in the control group. Transfection of IEC-6 cells with YAP siRNA significantly down-regulated the expression of VDR. By contrast, after incubating IEC-6 cells with lysophosphatidic acid, an agonist of YAP, upregulation of VDR and YAP was observed. Next, we investigated whether this effect occurs in vivo. Five-week-old male Sprague-Dawley rats underwent 80% small bowel resection to establish an SBS model. Rats treated with 1% w/v sodium propionate had high levels of VDR and YAP expression in the intestine and intestinal adaptation was clearly observed compared to the control group. However, these effects were blocked by intraperitoneal injection of verteporfin. Thus, this study showed that propionate promoted VDR expression in the intestine via the activity of YAP, both in vitro and in vivo. Moreover, propionate was shown to play an active role in postoperative intestinal adaptation in SBS rats.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Propionatos/farmacologia , Receptores de Calcitriol/genética , Síndrome do Intestino Curto/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/análise , Linhagem Celular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Propionatos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores de Calcitriol/análise , Síndrome do Intestino Curto/genética , Síndrome do Intestino Curto/patologia , Proteínas de Sinalização YAP
7.
J Surg Res ; 255: 86-95, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32543383

RESUMO

BACKGROUND: Short bowel syndrome (SBS) is a condition that results from inadequate intestinal absorptive capacity, usually after the loss of functional intestine. We have previously developed a severe model of SBS in zebrafish that demonstrated increased intestinal adaptation (IA) and epithelial proliferation in SBS zebrafish. However, many children with SBS do not have this extreme intestinal loss. Therefore, in this study, we developed a variation of this model to evaluate the effects of increasing intestinal length on IA and the complications of SBS. MATERIALS AND METHODS: After Institutional Animal Care and Use Committee approval, adult male zebrafish were assigned to three groups: sham (n = 30), S1-SBS (n = 30), and S3-SBS (n = 30). Sham surgery included ventral laparotomy alone. S1-SBS surgery consisted of laparotomy with creation of a proximal stoma at S1 (jejunostomy equivalent) and ligation at S4. S3-SBS surgery had stoma creation at S3 (ileostomy equivalent) and the same ligation. Fish were harvested at 14 d. Markers of IA were measured from proximal intestinal segments, and the liver was analyzed for development of hepatic steatosis. RESULTS: At 14 d, S3-SBS fish lost less weight than S1-SBS and had increased markers of IA compared with sham fish, which were decreased compared with S1-SBS fish. S3-SBS fish had decreased proximal intestinal inflammation compared with S1-SBS fish. S1-SBS fish developed extensive hepatic steatosis. Although S3-SBS fish have increased hepatic steatosis compared with sham fish, it is decreased compared with S1-SBS. CONCLUSIONS: Longer remnant intestine decreases the extent of IA, inflammation, and hepatic steatosis in a zebrafish model of SBS.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/métodos , Fígado Gorduroso/epidemiologia , Enteropatias/cirurgia , Intestinos/cirurgia , Síndrome do Intestino Curto/prevenção & controle , Animais , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Humanos , Intestinos/fisiopatologia , Masculino , Síndrome do Intestino Curto/etiologia , Síndrome do Intestino Curto/fisiopatologia , Peixe-Zebra
8.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G679-G691, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30896968

RESUMO

Intestinal adaptation (IA) is a critical response to increase epithelial surface area after intestinal loss. Short bowel syndrome (SBS) may follow massive intestinal resection in human patients, particularly without adequate IA. We previously validated a model in zebrafish (ZF) that recapitulates key SBS pathophysiological features. Previous RNA sequencing in this model identified upregulation of genes in the Wnt and Hippo pathways. We therefore sought to identify the timeline of increasing cell proliferation and considered the signaling that might underpin the epithelial remodeling of IA in SBS. SBS was created in a ZF model as previously reported and compared with sham fish with and without exposure to monensin, an ionophore known to inhibit canonical Wnt signaling. Rescue of the monensin effects was attempted with a glycogen synthase kinase 3 inhibitor that activates wnt signaling, CHIR-99021. A timeline was constructed to identify peak cellular proliferation, and the Wnt and Hippo pathways were evaluated. Peak stem cell proliferation and morphological changes of adaptation were identified at 7 days. Wnt inhibition diminished IA at 2 wk and resulted in activation of genes of the Wnt/ß-catenin and Yes-associated protein (YAP)/Hippo pathway. Increased cytoplasmic YAP was observed in monensin-treated SBS fish. Genes of the WASP-interacting protein (WIP) pathway were elevated during Wnt blockade. In conclusion, cellular proliferation and morphological changes accompany SBS even in attempted Wnt blockade. Wnt/ß-catenin, YAP/Hippo pathway, and WIP pathway genes increase during early Wnt blockade. Further understanding of the effects of Wnt and YAP pathway signaling in proliferating stem cells might enrich our knowledge of targets to assist IA. NEW & NOTEWORTHY Intestinal adaptation is a critical response to increase epithelial surface area after large intestinal losses. Inhibition of Wnt/ß-catenin signaling impairs intestinal adaptation in a zebrafish model of short bowel syndrome. There is a subsequent upregulation in genes of the Yes-associated protein/Hippo and WIP pathway. These may be targets for future human therapies, as patients are salvaged by the compensation of increased intestinal epithelial surface area through successful intestinal adaptation.


Assuntos
Intestinos/fisiologia , Monensin/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Síndrome do Intestino Curto/metabolismo , Transativadores/metabolismo , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Adaptação Fisiológica , Animais , Proliferação de Células/fisiologia , Humanos , Ionóforos de Próton/farmacologia , Serina-Treonina Quinase 3 , Regulação para Cima , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Proteínas de Sinalização YAP , Peixe-Zebra
9.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G727-G738, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509436

RESUMO

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene mutations are a risk factor for Crohn's disease and also associated with worse outcome in short bowel syndrome (SBS) patients independent of the underlying disease. The aim of this study was to analyze the effect of Nod2 deficiency on barrier function and stool microbiome after extensive ileocecal resection in mice. Male C57BL6/J wild-type (WT) and Nod2-knockout (KO) mice underwent 40% ileocecal resection. Sham control mice received simple transection of the ileum. Clinical outcome was monitored daily. Barrier function was measured with Ussing chambers using FITC-4-kDa-Dextran flux, transmucosal electrical resistance, and dilution potentials. Immunofluorescence of claudin-2 was studied. Composition of the stool microbiome was assessed by 16S rRNA gene sequencing. Resected Nod2-KO mice had impaired clinical outcome compared with resected WT mice. This was accompanied by increased stool water contents and increased plasma aldosterone. Histomorphological adaptation was independent of Nod2. Barrier function studies revealed impaired sodium to chloride permeability and altered claudin-2 localization in the absence of Nod2. Resection induced decreases of bacterial diversity and a shift of bacteriodetes-to-firmicutes ratios. Ileum and cecum resection-induced increase in proteobacteria was absent in Nod2-deficient mice. Verrucomicrobia were temporarily increased in Nod2-KO mice. Nod2 deficiency functionally impairs adaptation to short bowel syndrome via a lesser increase of epithelial sodium pore permeability, altered epithelial barrier function, and the microbiome.NEW & NOTEWORTHYNOD2 gene mutations are associated with the development of severe short bowel syndrome and intestinal failure. The influence of Nod2 mutations on intestinal adaptation in experimental short bowel syndrome has not been studied yet. Here, we provide data that Nod2 deficiency worsens clinical outcome and functional adaptation under SBS conditions in mice, indicating that NOD2 is required for successful adaptation after ileocecal resection.


Assuntos
Adaptação Fisiológica , Absorção Intestinal , Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Síndrome do Intestino Curto/genética , Aldosterona/metabolismo , Animais , Cloretos/metabolismo , Condutividade Elétrica , Microbioma Gastrointestinal , Íleo/metabolismo , Íleo/microbiologia , Transporte de Íons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD2/deficiência , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/fisiopatologia , Sódio/metabolismo
10.
Ann Hematol ; 98(10): 2407-2419, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31338570

RESUMO

Steroid-resistant acute graft-versus-host disease (GVHD) of the gastrointestinal tract associates with important morbidity and mortality. While high-dose steroids are the established first-line therapy in GVHD, no second-line therapy is generally accepted. In this analysis of 65 consecutive patients with severe, steroid-resistant, intestinal GVHD (92% stage 4), additional ileostomy surgery significantly reduced overall mortality (hazard ratio 0.54; 95% confidence interval, 0.36-0.81; p = 0.003) compared to conventional GVHD therapy. Median overall survival was 16 months in the ileostomy cohort compared to 4 months in the conventional therapy cohort. In the ileostomy cohort, both infectious- and GVHD-associated mortality were reduced (40% versus 77%). Significantly declined fecal volumes (p = 0.001) after surgery provide evidence of intestinal adaptation following ileostomy. Correlative studies indicated ileostomy-induced immune-modulation with a > 50% decrease of activated T cells (p = 0.04) and an increase in regulatory T cells. The observed alterations of the patients' gut microbiota may also contribute to ileostomy's therapeutic effect. These data show that ileostomy induced significant clinical responses in patients with steroid-resistant GVHD along with a reduction of pro-inflammatory immune cells and changes of the intestinal microbiota. Ileostomy is a treatment option for steroid-resistant acute GVHD of the gastrointestinal tract that needs further validation in a prospective clinical trial.


Assuntos
Resistência a Medicamentos , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Ileostomia , Doença Aguda , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Gastroenteropatias/microbiologia , Gastroenteropatias/mortalidade , Gastroenteropatias/cirurgia , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/cirurgia , Neoplasias Hematológicas/microbiologia , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Esteroides/administração & dosagem
11.
Dig Dis Sci ; 64(5): 1158-1170, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30569336

RESUMO

BACKGROUND: Short bowel syndrome results from extensive small bowel resection and induces adaptation of the remaining intestine. Ileocecal resection (ICR) is the most frequent situation in humans. Villus hypertrophy is one hallmark of mucosal adaptation, but the functional mechanisms of mucosal adaptation are incompletely understood. AIMS: The aim of the study was to characterize a clinically relevant model of short bowel syndrome but not intestinal failure in mice and to identify outcome predictors and mechanisms of adaptation. METHODS: Male C57BL6/J mice underwent 40% ICR and were followed for 7 or 14 days. Small bowel transection served as control. All mice underwent autopsy. Survival, body weight, wellness score, stool water content, plasma aldosterone concentrations, and paracellular permeability were recorded. RESULTS: Unlike controls, resected mice developed significant diarrhea with increased stool water. This was accompanied by sustained weight loss throughout follow-up. Villus length increased but did not correlate positively with adaptation. Plasma aldosterone concentrations correlated inversely with body weight at day 14. After ICR, intestinal epithelial (i.e., tight junctional) sodium permeability was increased. CONCLUSIONS: 40% ICR results in moderate to severe short bowel syndrome. Successful adaptation to the short bowel situation involves villus elongation but does not correlate with the degree of villus elongation alone. In addition, increased intestinal epithelial sodium permeability facilitates sodium-coupled solute transport. Hyperaldosteronism correlates with the severity of weight loss, indicates volume depletion, and counterregulates water loss.


Assuntos
Modelos Animais de Doenças , Hiperaldosteronismo/metabolismo , Mucosa Intestinal/metabolismo , Síndrome do Intestino Curto/metabolismo , Sódio/metabolismo , Animais , Hiperaldosteronismo/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Síndrome do Intestino Curto/patologia
12.
Pediatr Surg Int ; 35(6): 657-663, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30937511

RESUMO

BACKGROUND: There are no in vivo methods to measure adaptation in neonatal short bowel syndrome (SBS). We evaluated citrulline (Cit) levels in neonatal piglet surgical models of SBS. METHODS: Piglets underwent 75% mid-intestinal resection with jejunoileal anastomosis (JI), 75% distal resection of ileum with jejunocolic anastomosis (JC) or sham surgery. Jugular and gastric catheters were inserted for parenteral and enteral nutrition. On D7, small intestine length and weight were measured, jejunum collected for histopathology and Cit level determined. RESULTS: JI (n = 5) compared to JC (n = 5) had increased small intestinal length (JC - 17.5 cm; JI +22.0 cm; p = 0.02) and mass (JC 43.1 mg/cm/kg; JI 51.3 mg/cm/kg; p = 0.02), while Cit did not differ (JI 801.0 µM; JC 677.7 µM; p = 0.90). Including non-resected shams (n = 4), Cit correlated with length (R2 = 0.48; p = 0.006), but not for SBS alone (R2 = 0.11; p = 0.4), mass (R2 = 0.05; p = 0.5). A second experiment compared change in Cit levels from baseline to D7. Levels declined in sham (n = 8) and JC (n = 10) (sham - 110.1 µM; JC - 56.6 µM; p = 0.17), regardless of intestinal lengthening (sham 29.9 cm; JC - 10.4 cm; p = 0.002). CONCLUSION: Citrulline levels predict large differences in intestinal length and 'identify' SBS. However, citrulline cannot discriminate between adaptation in JI and JC, nor predict intestinal lengthening.


Assuntos
Adaptação Fisiológica , Citrulina/sangue , Intestinos/fisiopatologia , Síndrome do Intestino Curto/cirurgia , Anastomose Cirúrgica , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Colo/cirurgia , Íleo/cirurgia , Intestino Delgado/patologia , Jejuno/cirurgia , Modelos Animais , Síndrome do Intestino Curto/fisiopatologia , Suínos
13.
Gastroenterology ; 150(2): 454-64.e9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26481855

RESUMO

BACKGROUND & AIMS: Bariatric procedures, such as Roux-en-Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG), are the most effective approaches to resolve type 2 diabetes in obese individuals. Alimentary glucose absorption and intestinal disposal of blood glucose have not been directly compared between individuals or animals that underwent RYGB vs VSG. We evaluated in rats and humans how the gut epithelium adapts after surgery and the consequences on alimentary glucose absorption and intestinal disposal of blood glucose. METHODS: Obese male rats underwent RYGB, VSG, or sham (control) operations. We collected intestine segments from all rats; we performed histologic analyses and measured levels of messenger RNAs encoding the sugar transporters SGLT1, GLUT1, GLUT2, GLUT3, GLUT4, and GLUT5. Glucose transport and consumption were assayed using ex vivo jejunal loops. Histologic analyses were also performed on Roux limb sections from patients who underwent RYGB 1-5 years after surgery. Roux limb glucose consumption was assayed after surgery by positron emission and computed tomography imaging. RESULTS: In rats and humans that underwent RYGB, the Roux limb became hyperplasic, with an increased number of incretin-producing cells compared with the corresponding jejunal segment of controls. Furthermore, expression of sugar transporters and hypoxia-related genes increased and the nonintestinal glucose transporter GLUT1 appeared at the basolateral membrane of enterocytes. Ingested and circulating glucose was trapped within the intestinal epithelial cells of rats and humans that underwent RYGB. By contrast, there was no hyperplasia of the intestine after VSG, but the intestinal absorption of alimentary glucose was reduced and density of endocrine cells secreting glucagon-like peptide-1 increased. CONCLUSIONS: The intestine adapts differently to RYGB vs VSG. RYGB increases intestinal glucose disposal and VSG delays glucose absorption; both contribute to observed improvements in glycemia.


Assuntos
Glicemia/metabolismo , Gastrectomia/métodos , Derivação Gástrica , Absorção Intestinal , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Obesidade/cirurgia , Adaptação Fisiológica , Adulto , Animais , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Hiperplasia , Mucosa Intestinal/patologia , Jejuno/patologia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , RNA Mensageiro/metabolismo , Ratos , Estudos Retrospectivos , Fatores de Tempo , Tomografia Computadorizada por Raios X
14.
J Surg Res ; 220: 182-196, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180181

RESUMO

BACKGROUND: Improving treatment for short bowel syndrome requires a better understanding of how intestinal adaptation is affected by factors like mechanoluminal stimulation. We hypothesized that in mice, luminal diversion via an ileostomy would drive adaptive changes similar to those seen in human intestine after diversion while offering the opportunity to study the immediate events after resection that precede intestinal adaptation. MATERIALS AND METHODS: With Institutional Animal Care and Use Committee approval, a distal ileostomy with a long distal Hartman's was created in 9- to 14-week-old C57/B6 mice (n = 8). Control mice only had a midline laparotomy without stoma formation (n = 5). A rim of tissue from the proximal stoma was resected as a historical control for the proximal segment. Postoperatively, mice received a high-protein liquid diet and water ad libitum. On day 3, tissue from both the proximal and distal limbs were collected for histologic and RNA analysis. Morphometric measures, immunofluorescent antigen detection, and RNA expression were compared with Student paired t-tests with a P value < 0.05 considered significant. RESULTS: At 3 d, survival for mice with an ileostomy was 87% and average weight loss was 12.5% of initial weight compared to 6.05% for control mice. Compared to the distal limb, the proximal limb in mice with an ileostomy demonstrated significantly taller villi with deeper and wider crypts. The proximal limb also had decreased expression of intestinal stem cell markers lgr5, bmi1, sox9, and ascl2. Fewer goblet and enteroendocrine cells per hemivillus were also noted in the proximal limb. In control mice, none of these measures were significant between proximal and distal ileum except for villus height. CONCLUSIONS: This new murine ileostomy model allows study of intestinal adaptation without intestinal anastomosis, which can be technically challenging and morbid.


Assuntos
Células-Tronco Adultas/fisiologia , Ileostomia , Intestinos/citologia , Modelos Animais , Síndrome do Intestino Curto , Adaptação Fisiológica , Animais , Feminino , Masculino , Camundongos
15.
J Surg Res ; 207: 7-12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979490

RESUMO

INTRODUCTION: Glucagon-like peptide-2 (GLP-2) is a known intestinal growth factor that enhances mucosal mass and function in residual small intestine after massive small bowel resection (MSBR). Luminal omega-3 (OM-3) has been shown to have some growth factor properties. It is possible that their mechanisms of action differ. Thus, we hypothesized that administering these two substances together may have a synergistic effect. METHODS: A total of 60 adult female Sprague-Dawley rats underwent 80% MSBR and divided as follows (n = 15/group): Saline (Control) + regular feeds; GLP-2 + regular feeds; Saline + OM-3 enriched feeds; and GLP-2 + OM-3 enriched feeds. Five animals per group were sacrificed at 7, 14, and 28 days. Small intestine mucosa was harvested. DNA and protein content were measured (mucosal mass markers) at all three time points. Galactose and Glycine absorption were measured (functional capacity markers) at 28 days. Statistical analysis was done by ANOVA with post hoc Tukey's HSD test. RESULTS: At all three time points, DNA was increased in all treatment groups compared to control (P < 0.05), but GLP-2 + OM-3 group did not have increased DNA content when compared to either treatments alone. At 7 and 14 d, all three treatment groups had increased protein content compared to control (P < 0.05). At 28 d, GLP-2 + OM-3 did not have increased protein content compared to control or individual treatments (P < 1.0). All three treatment groups had increased absorption of galactose and glycine compared to control (P < 0.05) but not each other. CONCLUSIONS: Individually, GLP-2 and OM-3 are very effective in enhancing the adaptive process by increasing mucosal mass and function, at all three time points. More importantly, clinically, GLP-2 and OM-3 increase substrate absorption in a rat model of intestinal failure. However, the combination is not synergistic.


Assuntos
Ácidos Graxos Ômega-3/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Peptídeo 2 Semelhante ao Glucagon/uso terapêutico , Síndrome do Intestino Curto/tratamento farmacológico , Animais , Biomarcadores/metabolismo , DNA/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Ácidos Graxos Ômega-3/farmacologia , Feminino , Fármacos Gastrointestinais/farmacologia , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome do Intestino Curto/metabolismo , Resultado do Tratamento
16.
Am J Physiol Gastrointest Liver Physiol ; 310(6): G427-38, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26702137

RESUMO

Intestinal resection resulting in short bowel syndrome (SBS) carries a heavy burden of long-term morbidity, mortality, and cost of care, which can be attenuated with strategies that improve intestinal adaptation. SBS infants fed human milk, compared with formula, have more rapid intestinal adaptation. We tested the hypothesis that the major noncaloric human milk oligosaccharide 2'-fucosyllactose (2'-FL) contributes to the adaptive response after intestinal resection. Using a previously described murine model of intestinal adaptation, we demonstrated increased weight gain from 21 to 56 days (P < 0.001) and crypt depth at 56 days (P < 0.0095) with 2'-FL supplementation after ileocecal resection. Furthermore, 2'-FL increased small bowel luminal content microbial alpha diversity following resection (P < 0.005) and stimulated a bloom in organisms of the genus Parabacteroides (log2-fold = 4.1, P = 0.035). Finally, transcriptional analysis of the intestine revealed enriched ontologies and pathways related to antimicrobial peptides, metabolism, and energy processing. We conclude that 2'-FL supplementation following ileocecal resection increases weight gain, energy availability through microbial community modulation, and histological changes consistent with improved adaptation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/cirurgia , Leite Humano/química , Síndrome do Intestino Curto/tratamento farmacológico , Trissacarídeos/farmacologia , Animais , Ceco/cirurgia , Dieta , Procedimentos Cirúrgicos do Sistema Digestório , Metabolismo Energético/efeitos dos fármacos , Humanos , Íleo/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , RNA Ribossômico 16S/biossíntese , Trissacarídeos/química , Aumento de Peso/efeitos dos fármacos
17.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G492-500, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27418681

RESUMO

The technically easier one-anastomosis (mini) gastric bypass (MGB) is associated with similar metabolic improvements and weight loss as the Roux-en-Y gastric bypass (RYGB). However, MGB is controversial and suspected to result in greater malabsorption than RYGB. In this study, we compared macronutrient absorption and intestinal adaptation after MGB or RYGB in rats. Body weight and food intake were monitored and glucose tolerance tests were performed in rats subjected to MGB, RYGB, or sham surgery. Carbohydrate, protein, and lipid absorption was determined by fecal analyses. Intestinal remodeling was evaluated by histology and immunohistochemistry. Peptide and amino acid transporter mRNA levels were measured in the remodeled intestinal mucosa and those of anorexigenic and orexigenic peptides in the hypothalamus. The MGB and RYGB surgeries both resulted in a reduction of body weight and an improvement of glucose tolerance relative to sham rats. Hypothalamic orexigenic neuropeptide gene expression was higher in MGB rats than in RYGB or sham rats. Fecal losses of calories and proteins were greater after MGB than RYGB or sham surgery. Intestinal hyperplasia occurred after MGB and RYGB with increased jejunum diameter, higher villi, and deeper crypts than in sham rats. Peptidase and peptide or amino acid transporter genes were overexpressed in jejunal mucosa from MGB rats but not RYGB rats. In rats, MGB led to greater protein malabsorption and energy loss than RYGB. This malabsorption was not compensated by intestinal overgrowth and increased expression of peptide transporters in the jejunum.


Assuntos
Adaptação Fisiológica/fisiologia , Derivação Gástrica/efeitos adversos , Derivação Gástrica/métodos , Intestinos/fisiologia , Síndromes de Malabsorção/etiologia , Animais , Regulação da Expressão Gênica , Intolerância à Glucose , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ratos , Redução de Peso
18.
Am J Physiol Gastrointest Liver Physiol ; 307(6): G642-54, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25059825

RESUMO

Effective therapies are limited for patients with parenteral nutrition-dependent short bowel syndrome. We previously showed that intestinal expression of the transcriptional coregulator tetradecanoyl phorbol acetate-induced sequence 7 (tis7) is markedly increased during the adaptive response following massive small bowel resection and tis7 plays a role in normal gut lipid metabolism. Here, we further explore the functional implications of tis7 deletion in intestinal lipid metabolism and the adaptive response following small bowel resection. Intestinal tis7 transgenic (tis7(tg)), tis7(-/-), and wild-type (WT) littermates were subjected to 50% small bowel resection. Mice were fed a control or a high-saturated-fat (42% energy) diet for 21 days. Survival, body weight recovery, lipid absorption, mucosal lipid analysis, and the morphometric adaptive response were analyzed. Quantitative real-time PCR was performed to identify tis7 downstream gene targets. Postresection survival was markedly reduced in high-fat, but not control, diet-fed tis7(-/-) mice. Decreased survival was associated with anastomotic inflammation and intestinal obstruction postresection. High-fat, but not control, diet-fed tis7(-/-) mice had increased intestinal IL-6 expression. Intestinal lipid trafficking was altered in tis7(-/-) compared with WT mice postresection. In contrast, high-fat diet-fed tis7(tg) mice had improved survival postresection compared with WT littermates. High-fat diet feeding in the setting of tis7 deletion resulted in postresection anastomotic inflammation and small bowel obstruction. Tolerance of a calorie-rich, high-fat diet postresection may require tis7 and its target genes. The presence of luminal fat in the setting of tis7 deletion promotes an intestinal inflammatory response postresection.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Enterite/etiologia , Proteínas Imediatamente Precoces/deficiência , Obstrução Intestinal/etiologia , Intestino Delgado/metabolismo , Proteínas de Membrana/deficiência , Síndrome do Intestino Curto/complicações , Anastomose Cirúrgica , Animais , Modelos Animais de Doenças , Enterite/genética , Enterite/metabolismo , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Interleucina-6/metabolismo , Absorção Intestinal , Obstrução Intestinal/genética , Obstrução Intestinal/metabolismo , Intestino Delgado/cirurgia , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Intestino Curto/genética , Síndrome do Intestino Curto/metabolismo , Fatores de Tempo
19.
Gastroenterol Clin North Am ; 53(3): 473-480, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068008

RESUMO

In intestinal resection animal models of short bowel syndrome (SBS), the remaining epithelium mounts a robust adaptive response characterized by early stem cell expansion and increased crypt depth, villus height and nutrient absorption. In humans the adaptive response is critical for resumption of oral nutrition, yet it may be variable, and underlying mechanisms are much less well understood. Current knowledge relating to the role of stem and mesenchymal niche cells in the adaptive response in animal models and in human SBS are addressed in this review.


Assuntos
Mucosa Intestinal , Síndrome do Intestino Curto , Nicho de Células-Tronco , Síndrome do Intestino Curto/fisiopatologia , Síndrome do Intestino Curto/patologia , Humanos , Nicho de Células-Tronco/fisiologia , Animais , Mucosa Intestinal/patologia , Modelos Animais de Doenças , Células-Tronco/patologia
20.
J Pediatr Surg ; 59(4): 627-633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160183

RESUMO

BACKGROUND: We evaluated the effect of recombinant human hepatocyte growth factor (rh-HGF) on intestinal adaptation in a rat model of short-bowel syndrome (SBS). METHODS: Sprague-Dawley rats underwent jugular vein catheterization for continuous total parenteral nutrition (TPN) and 90 % small bowel resection. The animals were divided into 3 groups: TPN/SBS (control group, n = 7), TPN/SBS/intravenous recombinant human hepatocyte growth factor (HGF) (0.3 mg/kg/day) (HGF group, n = 7), and TPN/SBS/intravenous c-Met inhibitor (0.3 mg/kg/day) (anti-HGF group, n = 5). On day 7, rats were euthanized and histologically evaluated. Serum diamine oxidase (S-DAO) levels were evaluated using an enzyme-linked immunosorbent assay. The nutrient transporter and glucagon-like peptide-2 (GLP-2) receptor expression were evaluated using real-time polymerase chain reaction. RESULTS: The jejunal and ileal villus heights were higher and the S-DAO concentrations significantly higher (p = 0.04) in the HGF group than in the control and anti-HGF groups. The sodium-dependent glucose transporter 1 expression in the HGF group was significantly higher than in the control group and significantly suppressed in the anti-HGF group (p < 0.01). The peptide transporter 1 expression in the jejunum was higher in the HGF group than in the other groups and significantly suppressed in the anti-HGF group (p < 0.01). The GLP-2 receptor expression in the jejunum was higher in the HGF group than the other groups, and it was significantly suppressed in the anti-HGF group (p < 0.01). These jejunal results regarding nutrient transporter an GLP-2 receptor were not found in the ileum. CONCLUSIONS: The administration of rh-HGF appears to be more effective in the jejunum than in the ileum. TYPE OF STUDY: Experimental Research. LEVEL OF EVIDENCE: N/A.


Assuntos
Jejuno , Síndrome do Intestino Curto , Animais , Humanos , Ratos , Adaptação Fisiológica , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Jejuno/patologia , Ratos Sprague-Dawley , Síndrome do Intestino Curto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA