Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mar Drugs ; 21(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976246

RESUMO

Sea anemones are sessile invertebrates of the phylum Cnidaria and their survival and evolutive success are highly related to the ability to produce and quickly inoculate venom, with the presence of potent toxins. In this study, a multi-omics approach was applied to characterize the protein composition of the tentacles and mucus of Bunodosoma caissarum, a species of sea anemone from the Brazilian coast. The tentacles transcriptome resulted in 23,444 annotated genes, of which 1% showed similarity with toxins or proteins related to toxin activity. In the proteome analysis, 430 polypeptides were consistently identified: 316 of them were more abundant in the tentacles while 114 were enriched in the mucus. Tentacle proteins were mostly enzymes, followed by DNA- and RNA-associated proteins, while in the mucus most proteins were toxins. In addition, peptidomics allowed the identification of large and small fragments of mature toxins, neuropeptides, and intracellular peptides. In conclusion, integrated omics identified previously unknown or uncharacterized genes in addition to 23 toxin-like proteins of therapeutic potential, improving the understanding of tentacle and mucus composition of sea anemones.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Venenos de Cnidários/química , Brasil , Multiômica , Peptídeos/química , Toxinas Marinhas/química
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894869

RESUMO

Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.


Assuntos
Dieta , Obesidade , Ratos , Camundongos , Animais , Masculino , Feminino , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Dieta/efeitos adversos , Metaloendopeptidases/genética
3.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456900

RESUMO

Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas do Tecido Nervoso , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo
4.
Molecules ; 25(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121443

RESUMO

Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.


Assuntos
Índice de Massa Corporal , Canabinoides/uso terapêutico , Diabetes Mellitus Tipo 2 , Proteínas do Tecido Nervoso/uso terapêutico , Obesidade , Peptídeos/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia
5.
J Biol Chem ; 289(22): 15426-40, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24719317

RESUMO

The oligopeptidase neurolysin (EC 3.4.24.16; Nln) was first identified in rat brain synaptic membranes and shown to ubiquitously participate in the catabolism of bioactive peptides such as neurotensin and bradykinin. Recently, it was suggested that Nln reduction could improve insulin sensitivity. Here, we have shown that Nln KO mice have increased glucose tolerance, insulin sensitivity, and gluconeogenesis. KO mice have increased liver mRNA for several genes related to gluconeogenesis. Isotopic label semiquantitative peptidomic analysis suggests an increase in specific intracellular peptides in gastrocnemius and epididymal adipose tissue, which likely is involved with the increased glucose tolerance and insulin sensitivity in the KO mice. These results suggest the exciting new possibility that Nln is a key enzyme for energy metabolism and could be a novel therapeutic target to improve glucose uptake and insulin sensitivity.


Assuntos
Gluconeogênese/fisiologia , Intolerância à Glucose/enzimologia , Resistência à Insulina/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Tecido Adiposo/fisiologia , Animais , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Genótipo , Gluconeogênese/genética , Intolerância à Glucose/genética , Resistência à Insulina/genética , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares de Contração Rápida/fisiologia , Músculo Esquelético/fisiologia , Fenótipo , Condicionamento Físico Animal/fisiologia , Ácido Pirúvico/metabolismo
6.
Methods Mol Biol ; 2758: 199-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549015

RESUMO

Peptides have broad biological significance among different species. Intracellular peptides are considered a particular class of bioactive peptides, whose generation is initiated by proteasomal degradation of cytosolic, nuclear, or mitochondrial proteins. To extract and purify intracellular peptides, which may apply for biological peptides in general, it is important to consider the initial source: tissue, cell, or fluid. First, it is important to proceed fast with inactivation of proteases and/or peptidases commonly present in the biological source of peptides, which might rapidly degrade peptides during the initial process of extraction. The incubation of biological tissues, cells, and fluids at 80 °C for up to 20 min have been sufficient to fully inactivate proteases or peptidases activities. It is particularly important not to acidify the samples at high temperature, because it can lead to nonspecific hydrolysis reactions; particularly, the Asp-Pro peptide bond can be cleaved at acidic environments and elevated temperatures. Unfortunately, not every sample can have proteinases and peptidases denatured by heating the biological source of intracellular peptides. Plasma, for example, when heated at temperatures higher than 55 °C can clot and trap peptides within the fibrin net. Therefore, alternative conditions for inactivating proteinases and peptidases must apply for plasma samples. In this chapter, the most successful methods used in our laboratory to extract intracellular peptides are described.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases , Hidrólise , Proteômica
7.
Methods Mol Biol ; 2758: 307-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549021

RESUMO

Bioactive peptides such as neuropeptides and peptide hormones are largely understood in their involvement in a variety of physiologic systems. In addition to the neuropeptides produced and processed by the classic secretory pathway, intracellular peptides (InPeps) have shown biological activity in studies involving different organisms. A model that has become attractive in many research fields is the zebrafish (Danio rerio), which has allowed correlating behavioral responses or physiological processes with underlying molecular pathways or signaling cascades, improving the understanding of homeostasis mechanisms of the central nervous system, as well as pathological processes such as neurodegenerative diseases. Here, we provide a detailed description of the protocol of treatment with 6-OHDA, which mimics some features of Parkinson's Disease, as well as the validation of the treatment by evaluation of the locomotor activity and the protocol of peptide extraction followed by isotopic labeling to peptide relative quantitation by mass spectrometry.


Assuntos
Neuropeptídeos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Oxidopamina , Encéfalo/metabolismo , Peptídeos/metabolismo , Neuropeptídeos/metabolismo , Proteômica/métodos
8.
J Chem Neuroanat ; 133: 102345, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778734

RESUMO

Thimet oligopeptides (THOP 1) is a metal-dependent peptidase involved in the metabolism of neuropeptides and the presentation of peptides via MHC-1. It has been shown to play a role in the regulation of protein-protein interactions and the metabolism of intracellular peptides. THOP 1 is associated with important biological processes such as metabolism and neurodegenerative diseases, among others. The objective of this study is to elucidate the distribution of THOP 1 in the Bufo marinus brain. The analysis of THOP 1 amino acid sequences indicates that they have been conserved throughout evolution, with significant homology observed across various phyla. When comparing amphibians with other species, more than 70% identity can be identified. Immunohistochemistry analysis of the toad's brain has demonstrated that the enzyme has a ubiquitous distribution, consistent with previous findings in mammals. THOP 1 can be found in important areas of the brain, such as bulb, thalamic nuclei, striatum, hypothalamus, and among others. Nonetheless, THOP 1 is consistently localized within the nucleus, a pattern also observed in the rat brain. Therefore, based on these results, the toad appears to be an excellent model for studying the general biology of THOP 1, given the substantial homology of this enzyme with mammals and its similarity in distribution within the brain.


Assuntos
Bufo marinus , Metaloendopeptidases , Animais , Ratos , Bufo marinus/metabolismo , Peptídeos/metabolismo , Núcleos Talâmicos/enzimologia , Metaloendopeptidases/metabolismo , Encéfalo/enzimologia
9.
Methods Mol Biol ; 2602: 229-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446979

RESUMO

Analyzing intracellular peptides generated by proteasomes is highly informative to understand the spatiotemporal regulation of protein homeostasis. A large portion of eukaryotic proteins is proteolyzed within the 20S core particle of the 26S holoenzyme, where proteins are cleaved into peptides of varying lengths. A small percentage of these peptides are presented to the immune system as a representation of the proteome content of the cell. Therefore, understanding the rules that govern proteolytic specificity and product diversity is of relevance not only to biochemistry and proteostasis but also to physiology and immunology. One of the greatest challenges is to separate such proteasome-generated peptides from the total intracellular peptidome due to the susceptibility of short unstructured peptides to myriad proteases and peptidases that are activated upon cell lysis. Here, we describe a simple and rapid method to isolate peptides that are closely associated with proteasomes or trapped inside the core particle of proteasomes in eukaryotic cells. This approach termed PTPs, for proteasome-trapped peptides, requires a limited number of cells as starting materials compared to other published methods yet still provides sufficient yields for mass spectrometry-based proteomic analysis. A single sample obtained from cultured mammalian cells allowed the identification of 1000-2000 different PTPs following LC-MS analysis with high-resolution mass spectrometer.


Assuntos
Complexo de Endopeptidases do Proteassoma , Receptores de Trombina , Animais , Proteômica , Citoplasma , Proteostase , Mamíferos
10.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159195

RESUMO

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Assuntos
Sirolimo , Proteína 1A de Ligação a Tacrolimo , Animais , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptídeos/farmacologia , Sirolimo/farmacologia , Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
11.
J Proteomics ; 240: 104188, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781962

RESUMO

Intracranial saccular aneurysms (ISA) represent 90%-95% of all intracranial aneurysm cases, characterizing abnormal pockets at arterial branch points. Ruptures lead to subarachnoid hemorrhages (SAH) and poor prognoses. We applied mass spectrometry-based peptidomics to investigate the peptidome of twelve cerebrospinal fluid (CSF) samples collected from eleven patients diagnosed with ISA. For peptide profile analyses, participants were classified into: 1) ruptured intracranial saccular aneurysms (RIA), 2) unruptured intracranial saccular aneurysms (UIA), and late-ruptured intracranial saccular aneurysms (LRIA). Altogether, a total of 2199 peptides were detected by both Mascot and Peaks software, from which 484 (22.0%) were unique peptides. All unique peptides presented conserved chains, domains, regions of protein modulation and/or post-translational modification sites related to human diseases. Gene Ontology (GO) analyses of peptide precursor proteins showed that 42% are involved in binding, 56% in cellular anatomical entities, and 39% in intercellular signaling molecules. Unique peptides identified in patients diagnosed with RIA have a larger molecular weight and a distinctive developmental process compared to UIA and LRIA (P ≤ 0.05). Continued investigations will allow the characterization of the biological and clinical significance of the peptides identified in the present study, as well as identify prototypes for peptide-based pharmacological therapies to treat ISA. SIGNIFICANCE.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos
12.
Neurosci Lett ; 721: 134765, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32004656

RESUMO

Previous studies suggested the pharmacological potential of rat hemopressin (PVNFKFLSH) and its shorter synthetic peptide NFKF, to protect from pilocarpine-induced seizures in mice. Orally administered NFKF was shown to be hundred times more potent than cannabidiol in delaying the first seizure induced by pilocarpine in mice. Here, using an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis we have shown that C57BL/6 J mice orally administrated with NFKF (500 µg/kg) presented better EAE clinical scores and improved locomotor activity compared to saline administrated control mice. NFKF blocked the production of IL-1beta and IL-6, and has high scores binding cannabinoid type 2 receptors. Therefore, NFKF is an exciting new possibility to neurodegenerative diseases therapeutics.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Hemoglobinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Animais , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Hemoglobinas/química , Hemoglobinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular/métodos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ratos
13.
Zebrafish ; 16(3): 240-251, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017557

RESUMO

Peptides represent a large class of cell signaling molecules, and they are mainly produced by the classical secretory pathway or during protein degradation. The peptide profile of Danio rerio (zebrafish) shows a lack of information when compared with other consolidated animal models. The aim of this work was to characterize the peptide profile of zebrafish brain by using triplex reductive methylation of amines labeling and liquid chromatography coupled to electron spray mass spectrometry. A total of 411 peptide fragments were detected and 125 peptide sequences could be solved. Further analysis suggested that most of the peptides were fragments of intracellular cytosolic and mitochondrial proteins, and that 60% of the precursor proteins were cleaved at either their N- or C-terminal. The most common residue in the P1 position was leucine whereas other common residues were lysine, alanine, arginine, and phenylalanine. Rare cleavage sites at P1 position were histidine, glutamic acid, and isoleucine. The peptide profile of zebrafish brain has similarities with results previously described in mice brain peptidome studies. Thus, this study represents an important basis for the molecular understanding of zebrafish and its use as a model for human diseases.


Assuntos
Proteínas de Peixes/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteoma/genética , Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteoma/metabolismo , Análise de Sequência de RNA
14.
Biomolecules ; 9(4)2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995799

RESUMO

Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.


Assuntos
Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oligopeptídeos/farmacologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Oligopeptídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
J Proteomics ; 151: 74-82, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27523479

RESUMO

Hundreds of intracellular peptides that are neither antigens nor neuropeptides are present in mammalian cells and tissues. These peptides correspond to fragments of cytosolic, nuclear or mitochondrial proteins. Proteasome inhibition affects the levels of the intracellular peptides in human cell lines. Here, the effect of immuneproteasome expression on the intracellular peptide profile was evaluated, and its functional significance was investigated. The expression of the immuneproteasome in HeLa cells was induced by interferon gamma treatment, and the relative concentrations of the intracellular peptides were compared to those of the control cells using isotope labeling and electron spray mass spectrometry. One of the peptides identified, VGSELIQKY (EL28), corresponds to amino acids 251-259 of the human 19S ATPase regulatory subunit 4. This peptide was increased in the extracts of HeLa cells that had been treated with interferon gamma compared to those of control cells. In vitro, EL28 increased the chymotrypsin, trypsin and caspase-like proteasome activities. In vivo, when covalently linked to a cell-penetrating peptide, EL28 potentiated the ability of interferon gamma to stimulate the expression of the immuneproteasome ß5i subunit and to increase the proliferation of CD8+ T-cells. The EL28/cell-penetrating peptide construct also improved and positively modulated the secondary IgG anti-bovine serum albumin immune responsiveness elicited in high antibody-responder mice. Together, these results suggest that EL28 is a functional intracellular peptide that can potentiate interferon gamma activity. BIOLOGICAL SIGNIFICANCE: The functional identification of EL28 advances our understanding regarding the bioactive peptides generated by limited proteolysis within cells.


Assuntos
Adenosina Trifosfatases/química , Interferon gama/farmacologia , Peptídeos/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/química , Adenosina Trifosfatases/imunologia , Sequência de Aminoácidos , Células HeLa , Humanos , Espectrometria de Massas , Peptídeos/análise , Peptídeos/fisiologia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise
16.
J Proteomics ; 151: 97-105, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27321914

RESUMO

Schizophrenia is a complex disorder hypothesized to develop from a combination of genetic, neurodevelopmental, and environmental factors. Molecules that are directly involved in the pathogenesis of schizophrenia and may serve as biomarker candidates can be identified with "omics" approaches such as proteomics and peptidomics. In this context, we performed a peptidomic study in schizophrenia postmortem brains, to our knowledge the first such study in schizophrenia patients. We investigated the anterior temporal lobe (ATL) and corpus callosum (CC) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and a label-free ion quantification technique based on data-dependent acquisition (DDA). Results indicated alterations in a specific intracellular neurogranin peptide in both the ATL and CC and a decrease of PepH, a fragment of histone H2B type 1-H intracellular peptide, in the ATL. PepH was tested in serum-deprived Neuro2A cells and showed a protective effect against cell death. Cells were also challenged with lipopolysaccharide (LPS), and PepH was able to prevent the endotoxic effects of LPS. Our data suggest that specific intracellular peptides are altered in schizophrenia patients. The potential biological activity of PepH supports intracellular peptides as novel targets in the study not only of schizophrenia but also of other neuropsychiatric diseases. BIOLOGICAL SIGNIFICANCE: Psychiatric disorders are considerably more difficult to diagnose in their early stages. Usually, by the time the diagnosis is clear and clinical treatment can be started, the disorder is already established and thus of greater severity. Consequently, the scientific community has been searching for biomarker candidates that can aid the early detection of such disorders and for novel therapeutics to improve treatment or at least delay disease progression. Moreover, key molecules involved in the establishment of psychiatric diseases may help the understanding of their pathogenesis and thus drive the development of more effective treatments. The present work screened peptides that might be possible novel targets to control cell machinery in schizophrenia and identified an intracellular peptide with potential cytoprotective activity. To our knowledge, this is the first peptidomic study in schizophrenia patients.


Assuntos
Corpo Caloso/química , Peptídeos/análise , Esquizofrenia/patologia , Lobo Temporal/química , Biomarcadores/análise , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida , Corpo Caloso/patologia , Histonas/análise , Humanos , Neurogranina/análise , Proteômica/métodos , Espectrometria de Massas em Tandem , Lobo Temporal/patologia
17.
Curr Med Chem ; 24(17): 1862-1873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28482790

RESUMO

To this point, efforts to develop therapeutic peptides for intracellular applications were guided by the perception that unmodified linear peptides are highly unstable and therefore structural modifications are required to reduce proteolytic breakdown. Largely, this concept is a consequence of the fact that most research on intracellular peptides hitherto has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Interestingly, inside cells, endogenous peptides lacking any chemical modifications to enhance stability escape degradation to the point that they may even modulate intracellular signaling pathways. In addition, many unmodified synthetic peptides designed to interfere with intracellular signaling, following introduction into cells, have the expected activity demonstrating that biologically relevant concentrations can be reached. This review provides an overview of results and techniques relating to the exploration and application of linear, unmodified peptides. After an introduction to intracellular peptide turnover, the review mentions examples for synthetic peptides as modulators of intracellular signaling, introduces endogenous peptides with bioactivity, techniques to measure peptide stability, and peptide delivery. Future experiments should elucidate the rules needed to predict promising peptide candidates.


Assuntos
Peptídeos/química , Citoplasma/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Estabilidade Proteica , Transdução de Sinais
18.
J Proteomics ; 111: 238-48, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24727097

RESUMO

A large number of intracellular peptides are constantly produced following protein degradation by the proteasome. A few of these peptides function in cell signaling and regulate protein-protein interactions. Neurolysin (Nln) is a structurally defined and biochemically well-characterized endooligopeptidase, and its subcellular distribution and biological activity in the vertebrate brain have been previously investigated. However, the contribution of Nln to peptide metabolism in vivo is poorly understood. In this study, we used quantitative mass spectrometry to investigate the brain peptidome of Nln-knockout mice. An additional in vitro digestion assay with recombinant Nln was also performed to confirm the identification of the substrates and/or products of Nln. Altogether, the data presented suggest that Nln is a key enzyme in the in vivo degradation of only a few peptides derived from proenkephalin, such as Met-enkephalin and octapeptide. Nln was found to have only a minor contribution to the intracellular peptide metabolism in the entire mouse brain. However, further studies appear necessary to investigate the contribution of Nln to the peptide metabolism in specific areas of the murine brain. BIOLOGICAL SIGNIFICANCE: Neurolysin was first identified in the synaptic membranes of the rat brain in the middle 80's by Frederic Checler and colleagues. Neurolysin was well characterized biochemically, and its brain distribution has been confirmed by immunohistochemical methods. The neurolysin contribution to the central and peripheral neurotensin-mediated functions in vivo has been delineated through inhibitor-based pharmacological approaches, but its genuine contribution to the physiological inactivation of neuropeptides remains to be firmly established. As a result, the main significance of this work is the first characterization of the brain peptidome of the neurolysin-knockout mouse. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013. Guest Editors: César López-Camarillo, Victoria Pando-Robles and Bronwyn Jane Barkla.


Assuntos
Encéfalo/metabolismo , Metaloendopeptidases/genética , Proteômica , Alelos , Animais , Endopeptidases/química , Encefalinas/química , Genótipo , Hemoglobinas/química , Metaloendopeptidases/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/química , Neurotensina/química , Fragmentos de Peptídeos/química , Peptídeo Hidrolases/química , Peptídeos/química , Precursores de Proteínas/química , Proteínas Recombinantes/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA