Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-30962348

RESUMO

Using 894 phylogenetically diverse genomes of the Mycobacterium tuberculosis complex (MTBC), we simulated in silico the ability of the Hain Lifescience GenoType MTBC assay to differentiate the causative agents of tuberculosis. Here, we propose a revised interpretation of this assay to reflect its strengths (e.g., it can distinguish some strains of Mycobacterium canettii and variants of Mycobacterium bovis that are not intrinsically resistant to pyrazinamide) and limitations (e.g., Mycobacterium orygis cannot be differentiated from Mycobacterium africanum).


Assuntos
Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/classificação , Tuberculose/microbiologia , Técnicas de Genotipagem , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação
2.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625984

RESUMO

Lysobacter species are a group of environmental bacteria that are emerging as a new source of antibiotics. One characteristic of Lysobacter is intrinsic resistance to multiple antibiotics, which had not been studied. To understand the resistance mechanism, we tested the effect of blocking two-component regulatory systems (TCSs) on the antibiotic resistance of Lysobacter enzymogenes, a prolific producer of antibiotics. Upon treatment with LED209, an inhibitor of the widespread TCS QseC/QseB, L. enzymogenes produced a large amount of an unknown metabolite that was barely detectable in the untreated culture. Subsequent structural elucidation by nuclear magnetic resonance (NMR) unexpectedly revealed that the metabolite was indole. Indole production was also markedly induced by adrenaline, a known modulator of QseC/QseB. Next, we identified two TCS genes, L. enzymogenesqseC (Le-qseC) and Le-qseB, in L. enzymogenes and found that mutations of Le-qseC and Le-qseB also led to a dramatic increase in indole production. We then chemically synthesized a fluorescent indole probe that could label the cells. While the Le-qseB (cytoplasmic response regulator) mutant was clearly labeled by the probe, the Le-qseC (membrane sensor) mutant was not labeled. It was reported previously that indole can enhance antibiotic resistance in bacteria. Therefore, we tested if the dramatic increase in the level of indole production in L. enzymogenes upon blocking of Le-qseC and Le-qseB would lead to enhanced antibiotic resistance. Surprisingly, we found that indole caused the intrinsically multiantibiotic-resistant bacterium L. enzymogenes to become susceptible. Point mutations at conserved amino acids in Le-QseC also led to antibiotic susceptibility. Because indole is known as an interspecies signal, these findings may have implications.IMPORTANCE The environmental bacterium Lysobacter is a new source of antibiotic compounds and exhibits intrinsic antibiotic resistance. Here, we found that the inactivation of a two-component regulatory system (TCS) by an inhibitor or by gene deletion led to a remarkable increase in the level of production of a metabolite in L. enzymogenes, and this metabolite was identified to be indole. We chemically synthesized a fluorescent indole probe and found that it could label the wild type and a mutant of the TCS cytoplasmic response regulator but not a mutant of the TCS membrane sensor. Indole treatment caused the intrinsically multidrug-resistant bacterium L. enzymogenes to be susceptible to antibiotics. Mutations of the TCS sensor also led to antibiotic susceptibility. Because indole is known as an interspecies signal between gut microbiota and mammalian hosts, the observation that indole could render intrinsically resistant L. enzymogenes susceptible to common antibiotics may have implications.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Indóis/metabolismo , Lysobacter/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Lysobacter/genética , Lysobacter/metabolismo
3.
J Appl Microbiol ; 120(2): 251-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26509460

RESUMO

Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.


Assuntos
Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeriose/tratamento farmacológico
4.
J Antimicrob Chemother ; 69(7): 1844-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24627312

RESUMO

OBJECTIVES: An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. METHODS: E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. RESULTS: The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. CONCLUSIONS: Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives.


Assuntos
Antraciclinas/farmacologia , Antibacterianos/farmacologia , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Rifampina/farmacologia , Acetamidas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antraciclinas/química , Antraciclinas/isolamento & purificação , Antraciclinas/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Linezolida , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxazolidinonas/farmacologia , Streptomyces/metabolismo , Relação Estrutura-Atividade
5.
Indian J Microbiol ; 54(2): 190-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25320421

RESUMO

Soybean is extensively cultivated worldwide and is the largest source of biologically fixed nitrogen among legumes. It is nodulated by both slow and fast growing rhizobia. Indigenous soybean rhizobia in Vertisols of central India were assessed for utilization of 35 carbon sources and intrinsic resistance to 19 antibiotics. There was greater utilization of trehalose and raffinose by fast growers (87 and 73 % by fast vs. 35 and 30 % by slow growers); but slow growers had higher ability to utilize glucosamine (75 % by slow vs. 33 % by fast growers). A larger proportion of slow growers were resistant to vancomycin, polymyxin-B and rifampicin (70, 65 and 55 %) compared to fast growers (13, 7 and 7 % each). Among the two 16S rRNA sequence types in the slow growers, those belonging to Bradyrhizobium spp. utilized glucosamine while those belonging to Rhizobium radiobacter did not. All the fast growers had 16S rRNA homology to R. radiobacter and majority could not utilize glucosamine. It is suggested that during initial isolations and screening of rhizobia in strain selection programmes, using carbon sources like glucosamine and antibiotics like vancomycin, polymyxin-B and rifampicin in the media may provide a simple way of distinguishing Bradyrhizobium strains from R. radiobacter among the slow growers.

6.
J Glob Antimicrob Resist ; 37: 108-121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552872

RESUMO

OBJECTIVES: A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS: Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS: In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION: Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterobacter , Lipídeo A , Testes de Sensibilidade Microbiana , Polimixina B , Polimixina B/farmacologia , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/metabolismo , Antibacterianos/farmacologia , Lipídeo A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Arabinose/metabolismo , Arabinose/farmacologia , Arabinose/análogos & derivados , Humanos , Regulação Bacteriana da Expressão Gênica , Óperon , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Enterobacteriaceae/microbiologia , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
7.
Int J Med Microbiol ; 303(6-7): 287-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23499305

RESUMO

The intrinsic antibiotic resistome is a naturally occurring phenomenon that predates antibiotic chemotherapy and is present in all bacterial species. In addition to the intrinsic resistance mediated by the bacterial outer membrane and active efflux, studies have shown that a surprising number of additional genes and genetic loci also contribute to this phenotype. Antibiotic resistance is rife in both the clinic and the environment; novel therapeutic strategies need to be developed in order to prevent a major global clinical threat. The possibility of inhibiting elements comprising the intrinsic resistome in bacterial pathogens offers the promise for repurposing existing antibiotics against intrinsically resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Humanos , Redes e Vias Metabólicas
8.
Front Bioeng Biotechnol ; 10: 800734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372317

RESUMO

Harnessing the unique biochemical capabilities of non-model microorganisms would expand the array of biomanufacturing substrates, process conditions, and products. There are non-model microorganisms that fix nitrogen and carbon dioxide, derive energy from light, catabolize methane and lignin-derived aromatics, are tolerant to physiochemical stresses and harsh environmental conditions, store lipids in large quantities, and produce hydrogen. Model microorganisms often only break down simple sugars and require low stress conditions, but they have been engineered for the sustainable manufacture of numerous products, such as fragrances, pharmaceuticals, cosmetics, surfactants, and specialty chemicals, often by using tools from synthetic biology. Transferring complex pathways has proven to be exceedingly difficult, as the cofactors, cellular conditions, and energy sources necessary for this pathway to function may not be present in the host organism. Utilization of unique biochemical capabilities could also be achieved by engineering the host; although, synthetic biology tools developed for model microbes often do not perform as designed in other microorganisms. The metabolically versatile Rhodopseudomonas palustris CGA009, a purple non-sulfur bacterium, catabolizes aromatic compounds derived from lignin in both aerobic and anaerobic conditions and can use light, inorganic, and organic compounds for its source of energy. R. palustris utilizes three nitrogenase isozymes to fulfill its nitrogen requirements while also generating hydrogen. Furthermore, the bacterium produces two forms of RuBisCo in response to carbon dioxide/bicarbonate availability. While this potential chassis harbors many beneficial traits, stable heterologous gene expression has been problematic due to its intrinsic resistance to many antibiotics and the lack of synthetic biology parts investigated in this microbe. To address these problems, we have characterized gene expression and plasmid maintenance for different selection markers, started a synthetic biology toolbox specifically for the photosynthetic R. palustris, including origins of replication, fluorescent reporters, terminators, and 5' untranslated regions, and employed the microbe's endogenous plasmid for exogenous protein production. This work provides essential synthetic biology tools for engineering R. palustris' many unique biochemical processes and has helped define the principles for expressing heterologous genes in this promising microbe through a methodology that could be applied to other non-model microorganisms.

9.
Curr Res Microb Sci ; 3: 100094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024641

RESUMO

Modern intensive agricultural practices face numerous challenges that pose major threats to global food security. In order to address the nutritional requirements of the ever-increasing world population, chemical fertilizers and pesticides are applied on large scale to increase crop production. However, the injudicious use of agrochemicals has resulted in environmental pollution leading to public health hazards. Moreover, agriculture soils are continuously losing their quality and physical properties as well as their chemical (imbalance of nutrients) and biological health. Plant-associated microbes with their plant growth- promoting traits have enormous potential to solve these challenges and play a crucial role in enhancing plant biomass and crop yield. The beneficial mechanisms of plant growth improvement include enhanced nutrient availability, phytohormone modulation, biocontrol of phytopathogens and amelioration of biotic and abiotic stresses. Solid-based or liquid bioinoculant formulation comprises inoculum preparation, addition of cell protectants such as glycerol, lactose, starch, a good carrier material, proper packaging and best delivery methods. Recent developments of formulation include entrapment/microencapsulation, nano-immobilization of microbial bioinoculants and biofilm-based biofertilizers. This review critically examines the current state-of-art on use of microbial strains as biofertilizers and the important roles performed by these beneficial microbes in maintaining soil fertility and enhancing crop productivity.

10.
Res Microbiol ; 172(1): 103790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33197514

RESUMO

Ralstonia pickettii are ubiquitous in water environments. Members of this species are frequently, but not always, resistant to both gentamicin and arsenite. Gentamicin and arsenite co-resistance and the putative molecular mechanisms were investigated. A group of 37 R. pickettii strains isolated from drinking water and hospital wastewater were characterized for gentamicin and arsenite resistance phenotypes, the number and size of plasmids, and screened for genetic elements associated with arsenite tolerance, Integrative and Conjugative Elements (ICEs), among other. The genomes of three representative strains were compared. Most gentamicin resistant (GR) isolates (32/33) were resistant to arsenite, and harbored ICE- and ars operon-related genes. These genetic elements were not detected in any of the five arsenite susceptible strains, regardless of the GR (n = 1) or gentamicin susceptibility (GS) (n = 4) phenotype. The comparison of the genomes of two GR (one resistant and one susceptible to arsenite) and one GS strains suggested that these phenotypes correspond to three phylogroups, distinguished by presence of some genes only in GR isolates, in addition to point mutations in functional genes. The presence of ICEs and ars operon-related genes suggest that arsenite resistance might have been acquired by GR lineages.


Assuntos
Antibacterianos/farmacologia , Arsenitos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Gentamicinas/farmacologia , Ralstonia pickettii/efeitos dos fármacos , Ralstonia pickettii/genética , Conjugação Genética , Água Potável/microbiologia , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Ralstonia pickettii/isolamento & purificação , Águas Residuárias/microbiologia
11.
Antibiotics (Basel) ; 9(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630284

RESUMO

During the antibiotic crisis, bacteriophages (briefly phages) are increasingly considered as potential antimicrobial pillars for the treatment of infectious diseases. Apart from acquired drug resistance, treatment options are additionally hampered by intrinsic, chromosomal-encoded resistance. For instance, the chromosomal ampC gene encoding for the AmpC-type ß-lactamases is typically present in a number of nosocomial pathogens, including S. marcescens. In this study, phage SALSA (vB_SmaP-SALSA), with lytic activity against clinical isolates of S. marcescens, was isolated from effluent. Besides phage characterization, the aim of this study was to evaluate whether a synergistic effect between the antibiotic ampicillin/sulbactam (SAM) and phage can be achieved despite intrinsic drug resistance. Phage SALSA belongs to the Podoviridae family and genome-wide treeing analysis groups this phage within the phylogenetic radiation of T7-like viruses. The genome of Phage SALSA consists of 39,933 bp, which encode for 49 open reading frames. Phage SALSA was able to productively lyse 5 out of 20 clinical isolates (25%). A bacterial challenge with phage alone in liquid medium revealed that an initial strong bacterial decline was followed by bacterial re-growth, indicating the emergence of phage resistance. In contrast, the combination of SAM and phage, together at various concentrations, caused a complete bacterial eradication, confirmed by absorbance measurements and the absence of colony forming units after plating. The data show that it is principally possible to tackle the axiomatic condition of intrinsic drug resistance with a dual antimicrobial approach, which could be extended to other clinically relevant bacteria.

12.
Food Res Int ; 136: 109571, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846610

RESUMO

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bactérias , Resistência Microbiana a Medicamentos
13.
Nutrition ; 69: 110567, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733594

RESUMO

Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, with respect to metabolism, immune function, and nutrition. Any perturbation of these beneficial microbes leads to gut dysbiosis, which triggers the development of various disorders in the gastrointestinal system. Probiotics play a key role in resolving the dysbiosis posed by external factors such as antibiotics, other substances, or interventions. Supplementing probiotics with antibiotics is favorable in reducing the harmful effects of antibiotics on gut flora. These microbes also possess specific intrinsic drug resistance mechanisms that aid their survival in the internal environment. According to US Food and Drug Administration reports, species belonging to Lactobacillus and Bifidobacterium genera are the most common probiotics consumed by humans through commercial products. However, various studies have reported the tendency of microbes to acquire specific drug resistance, in recent years, through various mechanisms. The reports on transferable resistance among probiotics are of major concern, of which minimal information is available to date. The aim of this review was to describe the pros and cons of drug resistance among these beneficial microorganisms with emphasis on the recommended selection criteria for specific probiotics, devoid of transferable drug resistance genes, suitable for human consumption.


Assuntos
Resistência Microbiana a Medicamentos/genética , Lactobacillus/genética , Probióticos , Transformação Bacteriana , Conjugação Genética/genética , Humanos
14.
Front Microbiol ; 7: 2122, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101085

RESUMO

Bacillus toyonensis strain BCT-7112T (NCIMB 14858T) has been widely used as an additive in animal nutrition for more than 30 years without reports of adverse toxigenic effects. However, this strain is resistant to chloramphenicol and tetracycline and it is generally considered inadvisable to introduce into the food chain resistance determinants capable of being transferred to other bacterial strains, thereby adding to the pool of such determinants in the gastro-enteric systems of livestock species. We therefore characterized the resistance phenotypes of this strain and its close relatives to determine whether they were of recent origin, and therefore likely to be transmissible. To this end we identified the genes responsible for chloramphenicol (catQ) and tetracycline (tetM) resistance and confirmed the presence of homologs in other members of the B. toyonensis taxonomic unit. Unexpectedly, closely related strains encoding these genes did not exhibit chloramphenicol and tetracycline resistance phenotypes. To understand the differences in the behaviors, we cloned and expressed the genes, together with their upstream regulatory regions, into Bacillus subtilis. The data showed that the genes encoded functional proteins, but were expressed inefficiently from their native promoters. B. toyonensis is a taxonomic unit member of the Bacillus cereus group (sensu lato). We therefore extended the analysis to determine the extent to which homologous chloramphenicol and tetracycline resistance genes were present in other species within this group. This analysis revealed that homologous genes were present in nearly all representative species within the B. cereus group (sensu lato). The absence of known transposition elements and the observations that they are found at the same genomic locations, indicates that these chloramphenicol and tetracycline resistance genes are of ancient origin and intrinsic to this taxonomic group, rather than recent acquisitions. In this context we discuss definitions of what are and are not intrinsic genes, an issue that is of fundamental importance to both Regulatory Authorities, and the animal feed and related industries.

15.
ACS Infect Dis ; 2(2): 132-9, 2016 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-27624964

RESUMO

The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Vancomicina/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/microbiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Vancomicina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA