Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604778

RESUMO

The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.


Assuntos
Potenciais da Membrana , Optogenética , Animais , Optogenética/métodos , Camundongos , Masculino , Feminino , Potenciais da Membrana/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/genética , Camundongos Transgênicos
2.
Nano Lett ; 24(31): 9743-9749, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39072414

RESUMO

The dynamics of ion transport at the interface is the critical factor for determining the performance of an electrochemical energy storage device. While practical applications are realized in concentrated electrolytes and nanopores, there is a limited understanding of their ion dynamic features. Herein, we studied the interfacial ion dynamics in room-temperature ionic liquids by transient single-particle imaging with microsecond-scale resolution. We observed slowed-down dynamics at lower potential while acceleration was observed at higher potential. Combined with simulation, we found that the microstructure evolution of the electric double layer (EDL) results in potential-dependent kinetics. Then, we established a correspondence between the ion dynamics and interfacial ion composition. Besides, the ordered ion orientation within EDL is also an essential factor for accelerating interfacial ion transport. These results inspire us with a new possibility to optimize electrochemical energy storage through the good control of the rational design of the interfacial ion structures.

3.
Proc Natl Acad Sci U S A ; 116(3): 1053-1058, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598447

RESUMO

Activation of most primary sensory neurons results in transduction currents that are carried by cations. One notable exception is the vertebrate olfactory receptor neuron (ORN), where the transduction current is carried largely by the anion [Formula: see text] However, it remains unclear why ORNs use an anionic current for signal amplification. We have sought to provide clarification on this topic by studying the so far neglected dynamics of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] in the small space of olfactory cilia during an odorant response. Using computational modeling and simulations we compared the outcomes of signal amplification based on either [Formula: see text] or [Formula: see text] currents. We found that amplification produced by [Formula: see text] influx instead of a [Formula: see text] efflux is problematic for several reasons: First, the [Formula: see text] current amplitude varies greatly, depending on mucosal ion concentration changes. Second, a [Formula: see text] current leads to a large increase in the ciliary [Formula: see text] concentration during an odorant response. This increase inhibits and even reverses [Formula: see text] clearance by [Formula: see text] exchange, which is essential for response termination. Finally, a [Formula: see text] current increases the ciliary osmotic pressure, which could cause swelling to damage the cilia. By contrast, a transduction pathway based on [Formula: see text] efflux circumvents these problems and renders the odorant response robust and reliable.


Assuntos
Sinalização do Cálcio/fisiologia , Canais de Cloreto/metabolismo , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/metabolismo , Receptores Odorantes/metabolismo , Animais , Cálcio/metabolismo , Camundongos , Neurônios/citologia , Potássio/metabolismo , Sódio/metabolismo
4.
J Neurophysiol ; 125(2): 408-425, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236936

RESUMO

Spontaneous neuronal and astrocytic activity in the neonate forebrain is believed to drive the maturation of individual cells and their integration into complex brain-region-specific networks. The previously reported forms include bursts of electrical activity and oscillations in intracellular Ca2+ concentration. Here, we use ratiometric Na+ imaging to demonstrate spontaneous fluctuations in the intracellular Na+ concentration of CA1 pyramidal neurons and astrocytes in tissue slices obtained from the hippocampus of mice at postnatal days 2-4 (P2-4). These occur at very low frequency (∼2/h), can last minutes with amplitudes up to several millimolar, and mostly disappear after the first postnatal week. To further investigate their mechanisms, we model a network consisting of pyramidal neurons and interneurons. Experimentally observed Na+ fluctuations are mimicked when GABAergic inhibition in the simulated network is made depolarizing. Both our experiments and computational model show that blocking voltage-gated Na+ channels or GABAergic signaling significantly diminish the neuronal Na+ fluctuations. On the other hand, blocking a variety of other ion channels, receptors, or transporters including glutamatergic pathways does not have significant effects. Our model also shows that the amplitude and duration of Na+ fluctuations decrease as we increase the strength of glial K+ uptake. Furthermore, neurons with smaller somatic volumes exhibit fluctuations with higher frequency and amplitude. As opposed to this, larger extracellular to intracellular volume ratio observed in neonatal brain exerts a dampening effect. Finally, our model predicts that these periods of spontaneous Na+ influx leave neonatal neuronal networks more vulnerable to seizure-like states when compared with mature brain.NEW & NOTEWORTHY Spontaneous activity in the neonate forebrain plays a key role in cell maturation and brain development. We report spontaneous, ultraslow, asynchronous fluctuations in the intracellular Na+ concentration of neurons and astrocytes. We show that this activity is not correlated with the previously reported synchronous neuronal population bursting or Ca2+ oscillations, both of which occur at much faster timescales. Furthermore, extracellular K+ concentration remains nearly constant. The spontaneous Na+ fluctuations disappear after the first postnatal week.


Assuntos
Potenciais de Ação , Prosencéfalo/fisiologia , Canais de Sódio/metabolismo , Sódio/metabolismo , Animais , Feminino , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Neurológicos , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia
5.
Physiol Mol Biol Plants ; 27(2): 297-312, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33707870

RESUMO

Cadmium (Cd) in soil-plant system can abridge plant growth by initiating alterations in root zones. Hydroponics and rhizoboxes are useful techniques to monitor plant responses against various natural and/or induced metal stresses. However, soil based studies are considered more appropriate in order to devise efficient food safety and remediation strategies. The present research evaluated the Cd-mediated variations in elemental dynamics of rhizospheric soil together with in planta ionomics and morpho-physio-biochemical traits of two differentially Cd responsive maize cultivars. Cd-sensitive (31P41) and Cd-tolerant (3062) cultivars were grown in pots filled with 0, 20, 40, 60 and 80 µg/kg CdCl2 supplemented soil. The results depicted that the maize cultivars significantly influenced the elemental dynamics of rhizosphere as well as in planta mineral accumulation under applied Cd stress. The uptake and translocation of N, P, K, Ca, Mg, Zn and Fe from rhizosphere and root cell sap was significantly higher in Cd stressed cv. 3062 as compared to cv. 31P41. In sensitive cultivar (31P41), Cd toxicity resulted in significantly prominent reduction of biomass, leaf area, chlorophyll, carotenoids, protein contents as well as catalase activity in comparison to tolerant one (3062). Analysis of tolerance indexes (TIs) validated that cv. 3062 exhibited advantageous growth and efficient Cd tolerance due to elevated proline, phenolics and activity of antioxidative machinery as compared to cv. 31P41. The cv. 3062 exhibited 54% and 37% less Cd bio-concentration (BCF) and translocation factors (TF), respectively in comparison to cv. 31P41 under highest Cd stress regime. Lower BCF and TF designated a higher Cd stabilization by tolerant cultivar (3062) in rhizospheric zone and its potential use in future remediation plans.

6.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050492

RESUMO

A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.


Assuntos
Neoplasias da Mama/metabolismo , Hidrogênio/metabolismo , Prótons , Animais , Antineoplásicos , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/metabolismo , Respiração Celular/efeitos dos fármacos , Estudos Clínicos como Assunto , Terapia Combinada , Gerenciamento Clínico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular , Terapia de Alvo Molecular , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico , Bombas de Próton/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Pesquisa Translacional Biomédica , Resultado do Tratamento , Microambiente Tumoral
7.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046158

RESUMO

Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Inibidores da Bomba de Prótons/uso terapêutico , Prótons , Animais , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Bombas de Próton/metabolismo , Microambiente Tumoral
8.
J Exp Bot ; 68(12): 3267-3281, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369603

RESUMO

Oscillations in pollen tubes have been reported for many cellular processes, including growth, extracellular ion fluxes, and cytosolic ion concentrations. However, there is a shortage of quantitative methods to measure and characterize the different dynamic regimes observed. Herein, a suite of open-source computational methods and original algorithms were integrated into an automated analysis pipeline that we employed to characterize specific oscillatory signatures in pollen tubes of Arabidopsis thaliana (Col-0). Importantly, it enabled us to detect and quantify a Ca2+ spiking behaviour upon growth arrest and synchronized oscillations involving growth, extracellular H+ fluxes, and cytosolic Ca2+, providing the basis for novel hypotheses. Our computational approach includes a new tip detection method with subpixel resolution using linear regression, showing improved ability to detect oscillations when compared to currently available methods. We named this data analysis pipeline 'Computational Heuristics for Understanding Kymographs and aNalysis of Oscillations Relying on Regression and Improved Statistics', or CHUKNORRIS. It can integrate diverse data types (imaging, electrophysiology), extract quantitative and time-explicit estimates of oscillatory characteristics from isolated time series (period and amplitude) or pairs (phase relationships and delays), and evaluate their synchronization state. Here, its performance is tested with ratiometric and single channel kymographs, ion flux data, and growth rate analysis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Botânica/métodos , Biologia Computacional/métodos , Tubo Polínico/crescimento & desenvolvimento
9.
Chemphyschem ; 18(2): 230-237, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27662511

RESUMO

The poly(N1222 )x Li1-x [AMPS] ionomer system (AMPS=2-acrylamido-2-methylpropane sulfonic acid) with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass-transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (i.e. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium-metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222+ concentrations. At 50 mol % N1222+ concentration, the polymer backbone is more rigid than for higher N1222+ concentrations, but with increasing temperature Li ion dynamics are more significant than polymer or quaternary ammonium cation motions. Herein we suggest an ion-hopping mechanism for Li+ , arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness.

10.
Angew Chem Int Ed Engl ; 56(20): 5603-5606, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28398613

RESUMO

Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivity were systematically ruled out. Intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.


Assuntos
Meios de Contraste/química , Complexos de Coordenação/química , Gadolínio/química , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Água/química
11.
J Comput Neurosci ; 40(2): 177-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26852334

RESUMO

The extent of anoxic depolarization (AD), the initial electrophysiological event during ischemia, determines the degree of brain region-specific neuronal damage. Neurons in higher brain regions exhibiting nonreversible, strong AD are more susceptible to ischemic injury as compared to cells in lower brain regions that exhibit reversible, weak AD. While the contrasting ADs in different brain regions in response to oxygen-glucose deprivation (OGD) is well established, the mechanism leading to such differences is not clear. Here we use computational modeling to elucidate the mechanism behind the brain region-specific recovery from AD. Our extended Hodgkin-Huxley (HH) framework consisting of neural spiking dynamics, processes of ion accumulation, and ion homeostatic mechanisms unveils that glial-vascular K(+) clearance and Na(+)/K(+)-exchange pumps are key to the cell's recovery from AD. Our phase space analysis reveals that the large extracellular space in the upper brain regions leads to impaired Na(+)/K(+)-exchange pumps so that they function at lower than normal capacity and are unable to bring the cell out of AD after oxygen and glucose is restored.


Assuntos
Espaço Extracelular/metabolismo , Isquemia/patologia , Modelos Neurológicos , Neurônios/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Glucose/deficiência , Humanos , Hipóxia , Dinâmica não Linear
12.
Biochim Biophys Acta ; 1838(4): 1122-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24365119

RESUMO

The regulation of intracellular Ca(2+) triggers a multitude of vital processes in biological cells. Ca(2+) permeable ryanodine receptors (RyRs) are the biggest known ion channels and play a key role in the regulation of intracellular calcium concentrations, particularly in muscle cells. In this study, we construct a computational model of the pore region of the skeletal RyR and perform molecular dynamics (MD) simulations. The dynamics and distribution of Ca(2+) around the luminal pore entry of the RyR suggest that Ca(2+) ions are channeled to the pore entry due to the arrangement of (acidic) amino acids at the extramembrane surface of the protein. This efficient mechanism of Ca(2+) supply is thought to be part of the mechanism of Ca(2+) conductance of RyRs. Viral myocarditis is predominantly caused by coxsackie viruses that induce the expression of the protein 2B which is known to affect intracellular Ca(2+) homeostasis in infected cells. From our sequence comparison, it is hypothesized, that modulation of RyR could be due to replacement of its transmembrane domains (TMDs) by those domains of the viral channel forming protein 2B of coxsackie virus. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.


Assuntos
Simulação de Dinâmica Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas Virais/química , Sequência de Aminoácidos , Cálcio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular
13.
ACS Nano ; 18(19): 12468-12476, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699893

RESUMO

Na super ionic conductor (NASICON)-type polyanionic vanadium fluorophosphate Na3V2O2(PO4)2F (NVOPF) is a promising cathode material for high-energy sodium-ion batteries. The dynamic diffusion and exchange of sodium ions in the lattice of NVOPF are crucial for its electrochemical performance. However, standard characterizations are mostly focused on the as-synthesized material without cycling, which is different from the actual battery operation conditions. In this work, we investigated the hopping processes of sodium in NVOPF at the intermediate charging state with 23Na solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) calculations. Our experimental characterizations revealed six distinct sodium coordination sites in the intermediate structure and determined the exchange rates among these sites at variable temperatures. The theoretical calculations showed that these dynamic processes correspond to different ion transport pathways in the crystalline lattice. Our combined experimental and theoretical study uncovered the underlying mechanisms of the ion transport in cycled NVOPF and these understandings may help the optimization of cathode materials for sodium-ion batteries.

14.
ACS Appl Mater Interfaces ; 16(13): 16641-16652, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494599

RESUMO

In response to the growing need for efficient processing of temporal information, neuromorphic computing systems are placing increased emphasis on the switching dynamics of memristors. While the switching dynamics can be regulated by the properties of input signals, the ability of controlling it via electrolyte properties of a memristor is essential to further enrich the switching states and improve data processing capability. This study presents the synthesis of mesoporous silica (mSiO2) films using a sol-gel process, which enables the creation of films with controllable porosities. These films can serve as electrolyte layers in the diffusive memristors and lead to tunable neuromorphic switching dynamics. The mSiO2 memristors demonstrate short-term plasticity, which is essential for temporal signal processing. As porosity increases, discernible changes in operating currents, facilitation ratios, and relaxation times are observed. The underlying mechanism of such systematic control was investigated and attributed to the modulation of hydrogen-bonded networks within the porous structure of the silica layer, which significantly influences both anodic oxidation and ion migration processes during switching events. The result of this work presents mesoporous silica as a unique platform for precise control of neuromorphic switching dynamics in diffusive memristors.

15.
ACS Nano ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324887

RESUMO

Electrolyte-gated transistors (EGTs) are promising candidates as artificial synapses owing to their precise conductance controllability, quick response times, and especially their low operating voltages resulting from ion-assisted signal transmission. However, it is still vague how ion-related physiochemical elements and working mechanisms impact synaptic performance. Here, to address the unclear correlations, we suggest a methodical approach based on electrochemical analysis using poly(ethylene oxide) EGTs with three alkali ions: Li+, Na+, and K+. Cyclic voltammetry is employed to identify the kind of electrochemical reactions taking place at the channel/electrolyte interface, which determines the nonvolatile memory functionality of the EGTs. Additionally, using electrochemical impedance spectroscopy and qualitative analysis of electrolytes, we confirm that the intrinsic properties of electrolytes (such as crystallinity, solubility, and ion conductivity) and ion dynamics ultimately define the linearity/symmetricity of conductance modulation. Through simple but systematic electrochemical analysis, these results offer useful insights for the selection of components for high-performing artificial synapses.

16.
Nanomicro Lett ; 16(1): 233, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954272

RESUMO

The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.

17.
Carbohydr Polym ; 332: 121907, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431393

RESUMO

Low-concentration alkali treatments at low temperatures facilitate the crystal transition of cellulose I to II. However, the transition mechanism remains unclear. Hence, in this study, we traced the transition using in situ solid-state 13C CP/MAS NMR, WAXS, and 23Na NMR relaxation measurements. In situ solid-state 13C CP/MAS NMR and WAXS measurements revealed that soaking cellulose in NaOH at low temperatures disrupts the intramolecular hydrogen bonds and lowers the crystallinity of cellulose. The dynamics of Na ions (NaOH) play a crucial role in causing these phenomena. 23Na NMR relaxation measurements indicated that the Na-ion correlation time becomes longer during the crystal transition. This transition requires the penetration of Na ions (NaOH) into the cellulose crystal and a reduction in Na-ion mobility, which occurs at low temperatures or high NaOH concentrations. The interactions between cellulose and NaOH disrupt intramolecular hydrogen bonds, inducing a conformational change in the cellulose molecules into a more stable arrangement. This weakens the hydrophobic interactions of cellulose, and facilitates the penetration of NaOH and water into the crystal, leading to the formation of alkali cellulose. Our findings suggest that a strategy to control NaOH dynamics could lead to the discovery of a novel preparation method for cellulose II.

18.
Chemphyschem ; 14(13): 3113-20, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23959813

RESUMO

The local Li cation coordination motifs and the interactions between the hosting methacrylate-based polymer membrane and the liquid electrolyte [1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC)] are studied by employing liquid and solid-state NMR spectroscopy. At low temperatures, two different coordination modes for Li cations are identified with the help of dipolar-based solid-state NMR techniques, one of which is the exclusive coordination by DMC molecules, while the other is a co-coordination by the polymer and DMC molecules. At room temperature, Li cations are found to be extremely mobile, coordinated by EC and DMC molecules as well as the copolymer, as found by liquid-state NMR spectroscopy.

19.
Biology (Basel) ; 12(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37106781

RESUMO

The disordered nature of Intrinsically Disordered Proteins (IDPs) makes their structural ensembles particularly susceptible to changes in chemical environmental conditions, often leading to an alteration of their normal functions. A Radial Distribution Function (RDF) is considered a standard method for characterizing the chemical environment surrounding particles during atomistic simulations, commonly averaged over an entire or part of a trajectory. Given their high structural variability, such averaged information might not be reliable for IDPs. We introduce the Time-Resolved Radial Distribution Function (TRRDF), implemented in our open-source Python package SPEADI, which is able to characterize dynamic environments around IDPs. We use SPEADI to characterize the dynamic distribution of ions around the IDPs Alpha-Synuclein (AS) and Humanin (HN) from Molecular Dynamics (MD) simulations, and some of their selected mutants, showing that local ion-residue interactions play an important role in the structures and behaviors of IDPs.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37883785

RESUMO

In artificial tactile sensing, to emulate the human sense of touch, independent perception of shear force and pressure is important. Decoupling the pressure and shear force is a challenging task for ensuring stable grasping manipulation for both soft and brittle objects. This study introduces a deformable ion gel-based tactile sensor that is capable of distinguishing pressure from shear force when pressurized shear force is applied in any direction. Recognition of the decoupled forces and precise shear directions is enabled by acquiring tactile data at only two frequencies (20 Hz and 10 kHz) based on the frequency-dependent ion dynamics. This study demonstrates monitoring the changes in pressure, shear force, and shear directions while performing practical robotic actions, such as pouring a water bottle, opening a water bottle cap, and picking up a book and placing it on a shelf.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA