Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 72(6): 2136-2153, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33175167

RESUMO

In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.


Assuntos
Regulação da Expressão Gênica de Plantas , Ferro , Homeostase , Ferro/metabolismo , Minerais/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA