Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113798, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381608

RESUMO

Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.


Assuntos
Comunicação Celular , Imunoglobulinas , Animais , Imunoglobulinas/genética , Membrana Celular , Drosophila , Proteínas de Membrana
2.
Mech Dev ; 154: 193-202, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30030087

RESUMO

Cell adhesion molecules play a central role in morphogenesis, as they mediate the complex range of interactions between different cell types that result in their arrangement in multicellular organs and tissues. How their coordinated dynamic expression in space and time - an essential requirement for their function - is regulated at the genomic and transcriptional levels constitutes an important, albeit still little understood question. The Irre Cell Recognition Module (IRM) is a highly conserved phylogenetically group of structurally related single pass transmembrane glycoproteins belonging to the immunoglobulin superfamily that in Drosophila melanogaster are encoded by the genes roughest (rst), kin-of-irre (kirre), sticks-and-stones (sns) and hibris (hbs). Their cooperative and often partly redundant action are crucial to major developmental processes such axonal pathfinding, myoblast fusion and patterning of the pupal retina. In this latter system rst and kirre display a tightly regulated complementary transcriptional pattern so that lowering rst mRNA levels leads to a concomitant increase in kirre mRNA concentration. Here we investigated whether other IRM components are similarly co-regulated and the extent changes in their mRNA levels affect each other as well as their collective function in retinal patterning. Our results demonstrate that silencing any of the four IRM genes in 24% APF retinae changes the levels all other group members although only kirre and hbs mRNA levels are increased. Furthermore, expression, in a rst null background, of truncated versions of rst cDNA in which the portion encoding the intracellular domain has been partially or completely removed not only can still induce changes in mRNA levels of other IRM members but also result in Kirre mislocalization. Taken together, our data point to the presence of a highly precise and fine-tuned control mechanism coordinating IRM expression that may be crucial to the functional redundancy shown by its components during the patterning of the pupal retina.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Pupa/genética , Retina/fisiologia , Transcrição Gênica/genética , Animais , Moléculas de Adesão Celular/genética , Regulação da Expressão Gênica/genética , Glicoproteínas/genética , Proteínas de Membrana/genética , Morfogênese/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA