Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36402135

RESUMO

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Assuntos
Imunoglobulina M , Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Testes de Neutralização , Infecção por Zika virus/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação
2.
Cell ; 177(3): 524-540, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002794

RESUMO

B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.


Assuntos
Linfócitos B/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Antígenos/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Memória Imunológica , Plasmócitos/imunologia , Plasmócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas/imunologia
3.
Immunity ; 55(10): 1843-1855.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108634

RESUMO

To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.


Assuntos
Switching de Imunoglobulina , Recombinação Genética , Linfócitos B , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(13): e2313672121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502693

RESUMO

Memory B cells (MBCs) play a critical role in protection against homologous and variant pathogen challenge by either differentiating to plasma cells (PCs) or to germinal center (GC) B cells. The human MBC compartment contains both switched IgG+ and unswitched IgM+ MBCs; however, whether these MBC subpopulations are equivalent in their response to B cell receptor cross-linking and their resulting fates is incompletely understood. Here, we show that IgG+ and IgM+ MBCs can be distinguished based on their response to κ-specific monoclonal antibodies of differing affinities. IgG+ MBCs responded only to high-affinity anti-κ and differentiated almost exclusively toward PC fates. In contrast, IgM+ MBCs were eliminated by apoptosis by high-affinity anti-κ but responded to low-affinity anti-κ by differentiating toward GC B cell fates. These results suggest that IgG+ and IgM+ MBCs may play distinct yet complementary roles in response to pathogen challenge ensuring the immediate production of high-affinity antibodies to homologous and closely related challenges and the generation of variant-specific MBCs through GC reactions.


Assuntos
Switching de Imunoglobulina , Células B de Memória , Humanos , Linfócitos B , Antígenos , Imunoglobulina G , Imunoglobulina M , Memória Imunológica
5.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603748

RESUMO

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Influenza Humana , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Formação de Anticorpos , Influenza Humana/imunologia , Influenza Humana/virologia , COVID-19/imunologia , COVID-19/virologia , Switching de Imunoglobulina , SARS-CoV-2/fisiologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia
6.
Proc Natl Acad Sci U S A ; 119(25): e2121260119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704755

RESUMO

Antibodies are produced across multiple isotypes with distinct properties that coordinate initial antigen clearance and confer long-term antigen-specific immune protection. Here, we interrogate the molecular programs of isotype-specific murine plasma cells (PC) following helper T cell-dependent immunization and within established steady-state immunity. We developed a single-cell-indexed and targeted molecular strategy to dissect conserved and divergent components of the rapid effector phase of antigen-specific IgM+ versus inflammation-modulating programs dictated by type 1 IgG2a/b+ PC differentiation. During antibody affinity maturation, the germinal center (GC) cycle imparts separable programs for post-GC type 2 inhibitory IgG1+ and type 1 inflammatory IgG2a/b+ PC to direct long-term cellular function. In the steady state, two subsets of IgM+ and separate IgG2b+ PC programs clearly segregate from splenic type 3 IgA+ PC programs that emphasize mucosal barrier protection. These diverse isotype-specific molecular pathways of PC differentiation control complementary modules of antigen clearance and immune protection that could be selectively targeted for immunotherapeutic applications and vaccine design.


Assuntos
Diferenciação Celular , Centro Germinativo , Plasmócitos , Animais , Antígenos , Imunoglobulina G/genética , Imunoglobulina M , Camundongos , Plasmócitos/citologia , Análise de Célula Única , Linfócitos T Auxiliares-Indutores
7.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522156

RESUMO

The microtubule cytoskeleton is assembled from the α- and ß-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and ß-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and ß-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Citoesqueleto , Camundongos , Saccharomyces cerevisiae
8.
Eur J Immunol ; 53(4): e2250206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658749

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a challenge for biomedicine and public health. To advance the development of effective diagnostic, prognostic, and preventive interventions, our study focused on high-throughput antibody binding epitope mapping of the SARS-CoV-2 spike RBD protein by IgA, IgM and IgG antibodies in saliva and sera of different cohorts from healthy uninfected individuals to SARS-CoV-2-infected unvaccinated and vaccinated asymptomatic, recovered, nonsevere, and severe patients. Identified candidate diagnostic (455-LFRKSNLKPFERD-467), prognostic (395-VYADSFVIRGDEV-407-C-KLH, 332-ITNLCPFGEV-342-C-KLH, 352-AWNRKRI-358-C-KLH, 524-VCGPKKSTNLVKN-536-KLH), and protective (MKLLE-487-NCYFPLQSYGFQPTNGVG-504-GGGGS-446-GGNYNYLYRLFRKSNLKPFERD-467) epitopes were validated with sera from prevaccine and postvaccine cohorts. The results identified neutralizing epitopes and support that antibody recognition of linear B-cell epitopes in RBD protein is associated with antibody isotype and disease symptomatology. The findings in asymptomatic individuals suggest a role for anti-RBD antibodies in the protective response against SARS-CoV-2. The possibility of translating results into diagnostic interventions for the early diagnosis of asymptomatic individuals and prognosis of disease severity provides new tools for COVID-19 surveillance and evaluation of risks in hospitalized patients. These results, together with other approaches, may contribute to the development of new vaccines for the control of COVID-19 and other coronavirus-related diseases using a quantum vaccinomics approach through the combination of protective epitopes.


Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Mapeamento de Epitopos , Epitopos de Linfócito B , SARS-CoV-2
9.
J Allergy Clin Immunol ; 152(1): 214-229, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36828082

RESUMO

BACKGROUND: Allergic disease reflects specific inflammatory processes initiated by interaction between allergen and allergen-specific IgE. Specific immunotherapy (SIT) is an effective long-term treatment option, but the mechanisms by which SIT provides desensitization are not well understood. OBJECTIVE: Our aim was to characterize IgE sequences expressed by allergen-specific B cells over a 3-year longitudinal study of patients with aeroallergies who were undergoing SIT. METHODS: Allergen-specific IgE-expressing clones were identified by using combinatorial single-chain variable fragment libraries and tracked in PBMCs and nasal biopsy samples over a 3-year period with antibody gene repertoire sequencing. The characteristics of private IgE-expressing clones were compared with those of stereotyped or "public" IgE responses to the grass pollen allergen Phleum pratense (Phl p) 2. RESULT: Members of the same allergen-specific IgE lineages were observed in nasal biopsy samples and blood, and lineages detected at baseline persisted in blood and nasal biopsy samples after 3 years of SIT, including B cells that express IgE. Evidence of progressive class switch recombination to IgG subclasses was observed after 3 years of SIT. A common stereotyped Phl p 2-specific antibody heavy chain sequence was detected in multiple donors. The amino acid residues enriched in IgE-stereotyped sequences from seropositive donors were analyzed with machine learning and k-mer motif discovery. Stereotyped IgE sequences had lower overall rates of somatic hypermutation and antigen selection than did single-chain variable fragment-derived allergen-specific sequences or IgE sequences of unknown specificity. CONCLUSION: Longitudinal tracking of rare circulating and tissue-resident allergen-specific IgE+ clones demonstrates persistence of allergen-specific IgE+ clones, progressive class switch recombination to IgG subtypes, and distinct maturation of a stereotyped Phl p 2 clonotype.


Assuntos
Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/genética , Estudos Longitudinais , Dessensibilização Imunológica , Alérgenos , Phleum , Imunoglobulina E , Imunoglobulina G , Evolução Clonal , Proteínas de Plantas , Poaceae
10.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473808

RESUMO

Antibodies to DNA are a diverse set of antibodies that bind sites on DNA, a polymeric macromolecule that displays various conformations. In a previous study, we showed that sera of normal healthy subjects (NHS) contain IgG antibodies to Z-DNA, a left-handed helix with a zig-zig backbone. Recent studies have demonstrated the presence of Z-DNA in bacterial biofilms, suggesting a source of this conformation to induce responses. To characterize further antibodies to Z-DNA, we used an ELISA assay with brominated poly(dGdC) as a source of Z-DNA and determined the isotype of these antibodies and their binding properties. Results of these studies indicate that NHS sera contain IgM and IgA as well as IgG anti-Z-DNA antibodies. As shown by the effects of ionic strength in association and dissociation assays, the anti-Z-DNA antibodies bind primarily by electrostatic interactions; this type of binding differs from that of induced anti-Z-DNA antibodies from immunized animals which bind by non-ionic interactions. Furthermore, urea caused dissociation of NHS anti-Z-DNA at molar concentrations much lower than those for the induced antibodies. These studies also showed IgA anti-Z-DNA antibodies in fecal water. Together, these studies demonstrate that antibodies to Z-DNA occur commonly in normal immunity and may arise as a response to Z-DNA of bacterial origin.


Assuntos
DNA Forma Z , Animais , Humanos , Voluntários Saudáveis , Anticorpos Antinucleares , Imunoglobulina G , Imunoglobulina A
11.
J Infect Dis ; 227(3): 371-380, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314635

RESUMO

BACKGROUND: Evaluating the performance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological assays and clearly articulating the utility of selected antigens, isotypes, and thresholds is crucial to understanding the prevalence of infection within selected communities. METHODS: This cross-sectional study, implemented in 2020, screened PCRconfirmed coronavirus disease 2019 patients (n 86), banked prepandemic and negative samples (n 96), healthcare workers and family members (n 552), and university employees (n 327) for antiSARS-CoV-2 receptor-binding domain, trimeric spike protein, and nucleocapsid protein immunoglobulin (Ig)G and IgA antibodies with a laboratory-developed enzyme-linked immunosorbent assay and tested how antigen, isotype and threshold choices affected the seroprevalence outcomes. The following threshold methods were evaluated: (i) mean 3 standard deviations of the negative controls; (ii) 100 specificity for each antigen-isotype combination; and (iii) the maximal Youden index. RESULTS: We found vastly different seroprevalence estimates depending on selected antigens and isotypes and the applied threshold method, ranging from 0.0 to 85.4. Subsequently, we maximized specificity and reported a seroprevalence, based on more than one antigen, ranging from 9.3 to 25.9. CONCLUSIONS: This study revealed the importance of evaluating serosurvey tools for antigen-, isotype-, and threshold-specific sensitivity and specificity, to interpret qualitative serosurvey outcomes reliably and consistently across studies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Proteínas do Nucleocapsídeo , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Imunoglobulina G , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
12.
J Virol ; 96(4): e0160021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878902

RESUMO

A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2-reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Linfócitos B/imunologia , COVID-19/genética , Imunoglobulina G/genética , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Humanos , Imunoglobulina G/imunologia , Receptores de Antígenos de Linfócitos B/imunologia
13.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015809

RESUMO

The world is facing a pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Adaptive immune responses are essential for SARS-CoV-2 virus clearance. Although a large body of studies have been conducted to investigate the immune mechanism in COVID-19 patients, we still lack a comprehensive understanding of the BCR repertoire in patients. In this study, we used the single-cell V(D)J sequencing to characterize the BCR repertoire across convalescent COVID-19 patients. We observed that the BCR diversity was significantly reduced in disease compared with healthy controls. And BCRs tend to skew toward different V gene segments in COVID-19 and healthy controls. The CDR3 sequences of heavy chain in clonal BCRs in patients were more convergent than that in healthy controls. In addition, we discovered increased IgG and IgA isotypes in the disease, including IgG1, IgG3 and IgA1. In all clonal BCRs, IgG isotypes had the most frequent class switch recombination events and the highest somatic hypermutation rate, especially IgG3. Moreover, we found that an IgG3 cluster from different clonal groups had the same IGHV, IGHJ and CDR3 sequences (IGHV4-4-CARLANTNQFYDSSSYLNAMDVW-IGHJ6). Overall, our study provides a comprehensive characterization of the BCR repertoire in COVID-19 patients, which contributes to the understanding of the mechanism for the immune response to SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/imunologia , Éxons VDJ/genética , Linfócitos B/imunologia , COVID-19/genética , COVID-19/virologia , Feminino , Humanos , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Receptores de Antígenos de Linfócitos B/imunologia , SARS-CoV-2/patogenicidade , Análise de Sequência , Análise de Célula Única , Éxons VDJ/imunologia
14.
J Med Virol ; 95(4): e28721, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185862

RESUMO

The ectodomain of influenza matrix protein 2 (M2e) is a promising target for the development of universal prophylactic and therapeutic agents against influenza viruses of different subtypes. We constructed three M2e-specific monoclonal antibody variants, M2A1-1 (IgG1), M2A1-2a (IgG2a), M2A1-2b (IgG2b), which have the same Fab region targeting the M2e epitope but different isotypes, and compared their protective efficacy in influenza PR8-infected mice. We found that anti-M2e antibodies provided protection against influenza virus in a subtype-dependent manner, with the IgG2a variant providing significantly better protection with lower virus titers and milder lung injury than IgG1 and IgG2b isotypes. Additionally, we observed that the protective efficacy was dependent on the administration routes, with intranasal administration of antibody providing better protection than intraperitoneal administration. The timing of administration was also critical in determining the protective efficacy; while all the antibody isotypes provided protection when administered before influenza challenge, only IgG2a provided minimal protection when the antibodies were administered after virus challenge. These results provide valuable information for optimizing the therapeutics usage of M2e-based antibodies and furthering the development of M2e-based universal influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Humanos , Anticorpos Antivirais , Imunoglobulina G , Proteínas da Matriz Viral/genética , Camundongos Endogâmicos BALB C
15.
Parasitology ; 150(8): 672-682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165895

RESUMO

Gastrointestinal nematodes threaten the productivity of grazing livestock and anthelmintic resistance has emerged globally. It is broadly understood that wild ruminants living in sympatry with livestock act as a positive source of refugia for anthelmintic-susceptible nematodes. However, they might also act as reservoirs of anthelmintic-resistant nematodes, contributing to the spread of anthelmintic resistance at a regional scale. Here, we sampled managed sheep and cattle together with feral goats within the same property in New South Wales, Australia. Internal transcribed spacer 2 (ITS-2) nemabiome metabarcoding identified 12 gastrointestinal nematodes (Cooperia oncophora, Cooperia punctata, Haemonchus contortus, Haemonchus placei, Nematodirus spathiger, Ostertagia ostertagi, Teladorsagia circumcincta, Oesophagostomum radiatum, Oesophagostomum venulosum, Trichostrongylus axei, Trichostrongylus colubriformis and Trichostrongylus rugatus). Isotype-1 ß-tubulin metabarcoding targeting benzimidazole resistance polymorphisms identified 6 of these nematode species (C. oncophora, C. punctata, H. contortus, H. placei, O. ostertagi and T. circumcincta), with the remaining 3 genera unable to be identified to the species level (Nematodirus, Oesophagostomum, Trichostrongylus). Both ITS-2 and ß-tubulin metabarcoding showed the presence of a cryptic species of T. circumcincta, known from domestic goats in France. Of the gastrointestinal nematodes detected via ß-tubulin metabarcoding, H. contortus, T. circumcincta, Nematodirus and Trichostrongylus exhibited the presence of at least one resistance genotype. We found that generalist gastrointestinal nematodes in untreated feral goats had a similarly high frequency of the benzimidazole-resistant F200Y polymorphism as those nematodes in sheep and cattle. This suggests cross-transmission and maintenance of the resistant genotype within the wild ruminant population, affirming that wild ruminants should be considered potential reservoirs of anthelmintic resistance.


Assuntos
Reservatórios de Doenças , Resistência a Medicamentos , Cabras , Helmintíase Animal , Nematoides , Bovinos/parasitologia , Criação de Animais Domésticos/métodos , Animais Selvagens/parasitologia , Reservatórios de Doenças/parasitologia , Resistência a Medicamentos/genética , Genótipo , Cabras/parasitologia , Helmintíase Animal/parasitologia , Helmintíase Animal/transmissão , Nematoides/efeitos dos fármacos , Nematoides/genética , New South Wales , Ovinos/parasitologia , Animais
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1551-1560, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439022

RESUMO

Microtubules are hollow α/ß-tubulin heterodimeric polymers that play critical roles in cells. In vertebrates, both α- and ß-tubulins have multiple isotypes encoded by different genes, which are intrinsic factors in regulating microtubule functions. However, the structures of microtubules composed of different tubulin isotypes, especially α-tubulin isotypes, remain largely unknown. Here, we purify recombinant tubulin heterodimers composed of different mouse α-tubulin isotypes, including α1A, α1C and α4A, with the ß-tubulin isotype ß2A. We further assemble and determine the cryo-electron microscopy (cryo-EM) structures of α1A/ß2A, α1C/ß2A, and α4A/ß2A microtubules. Our structural analysis demonstrates that α4A/ß2A microtubules exhibit longitudinal contraction between tubulin interdimers compared with α1A/ß2A and α1C/ß2A microtubules. Collectively, our findings reveal that α-tubulin isotype composition can tune microtubule structures, and also provide evidence for the "tubulin code" hypothesis.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Camundongos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Microscopia Crioeletrônica , Microtúbulos/fisiologia
17.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769136

RESUMO

Alterations in the gut microbiota, "dysbiosis," have been reported in autoimmune diseases, including multiple sclerosis (MS), and their animal models. Although the animal models were induced by injections of autoantigens with adjuvants, including complete Freund's adjuvant (CFA) and pertussis toxin (PT), the effects of adjuvant injections on the microbiota are largely unknown. We aimed to clarify whether adjuvant injections could affect the microbiota in the ileum and feces. Using 16S rRNA sequencing, we found decreased alpha diversities of the gut microbiota in mice injected with CFA and PT, compared with naïve mice. Overall, microbial profiles visualized by principal component analysis demonstrated dysbiosis in feces, but not in the ileum, of adjuvant-injected mice, where the genera Lachnospiraceae NK4A136 group and Alistipes contributed to dysbiosis. When we compared the relative abundances of individual bacteria, we found changes in 16 bacterial genera in feces and seven genera in the ileum of adjuvant-injected mice, in which increased serum levels of antibody against mycobacteria (a component of CFA) and total IgG2c were correlated with the genus Facklamia. On the other hand, increased IgG1 and IgA concentrations were correlated with the genus Atopostipes. Therefore, adjuvant injections alone could alter the overall microbial profiles (i.e., microbiota) and individual bacterial abundances with altered antibody responses; dysbiosis in animal models could be partly due to adjuvant injections.


Assuntos
Disbiose , Microbioma Gastrointestinal , Camundongos , Animais , Disbiose/induzido quimicamente , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Formação de Anticorpos , Adjuvantes Imunológicos/farmacologia , Bactérias/genética , Fezes/microbiologia , Adjuvante de Freund/farmacologia , Íleo/microbiologia , Antibacterianos/farmacologia , Imunoglobulina G/farmacologia
18.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(4): 631-635, 2023 Aug 18.
Artigo em Chinês | MEDLINE | ID: mdl-37534643

RESUMO

OBJECTIVE: To detect serum IgA isotype of anti-v-raf murine sarcoma viral oncogene homologue B1 (BRAF) antibody levels in the rheumatoid arthritis (RA) patients in order to investigate their clinical significance in RA. METHODS: Serum samples were obtained from 61 RA patients, 21 osteoarthritis (OA) patients, 16 systemic lupus erythematosus (SLE) patients, 16 gout patients, 16 Sjögren's syndrome (SS) patients and 22 healthy controls. IgA isotype of anti-BRAF antibody levels in the sera were examined by enzyme-linked immunosorbent assay (ELISA). The associations between IgA isotype of anti-BRAF antibody levels and the clinical features including age, disease duration and laboratory parameters including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), disease activity score in 28 joints (DAS28), anti-cyclic citrullinated peptide (anti-CCP) antibody, immunoglobulin and BRAF protein levels in the RA patients were evaluated. Data analyses were performed by using SPSS 19.0 program. RESULTS: The serum IgA isotype of anti-BRAF antibody levels in the RA patients were significantly higher than in the SLE, gout, OA patients and healthy controls, the P value was 0.011, < 0.001, < 0.001 and < 0.001, respectively. The serum IgA isotype of anti-BRAF antibody levels in the SS patients were also significantly higher than in the SLE, gout, OA patients and healthy controls, the P value was 0.029, 0.004, 0.001 and < 0.001, respectively. However, there was no difference between the RA and SS patients (P=0.762). IgA isotype of anti-BRAF antibody was measurable in the RA patients without RF, anti-CCP antibody or anti-keratin antibody (AKA) antibodies. The levels of IgA isotype of anti-BRAF antibody in the RA patients did not show any correlation with clinical features such as age and disease duration or laboratory parameters including ESR, CRP, RF, DAS28, anti-CCP antibody, immunoglobulin and BRAF protein levels. Compared with the clinical features and laboratory indexes of normal and elevated levels of IgA isotype of anti-BRAF antibody groups in the RA patients, there was no significant differences between the two groups in age, disease duration, ESR, CRP, RF, DAS28, anti-CCP antibody, immunoglobulin or BRAF protein levels. CONCLUSION: The elevated level of IgA isotype of anti-BRAF antibody in the RA patients showed that IgA isotype of anti-BRAF antibody might play a role in the pathogenesis of RA. Furthermore, detection of IgA isotype of anti-BRAF antibody in the serum negative RA patients showed that it might be helpful for the diagnosis of the serum negative RA patients.


Assuntos
Artrite Reumatoide , Gota , Lúpus Eritematoso Sistêmico , Osteoartrite , Síndrome de Sjogren , Animais , Camundongos , Humanos , Anticorpos Antiproteína Citrulinada , Artrite Reumatoide/diagnóstico , Fator Reumatoide , Autoanticorpos , Proteína C-Reativa/metabolismo , Oncogenes , Imunoglobulina A , Peptídeos Cíclicos
19.
Immunology ; 165(1): 110-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458991

RESUMO

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/imunologia , Cryptococcus neoformans/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Células CHO , Linhagem Celular , Cricetulus , Criptococose/imunologia , Epitopos/química , Epitopos/imunologia , Camundongos , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade
20.
BMC Immunol ; 23(1): 11, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246036

RESUMO

BACKGROUND: The B cell receptor (BCR) repertoire is highly diverse among individuals. Poor similarity of the spectrum among inbred baseline mice may limit the ability to discriminate true signals from those involving specific experimental factors. The repertoire similarity of the baseline status lacks intensive measurements. RESULTS: We measured the repertoire similarity of IgH in blood and spleen samples from untreated BALB/c and C57BL/6J mice to investigate the baseline status of the two inbred strains. The antibody pool was stratified by the isotype of IgA, IgG and IgM. Between individuals, the results showed better convergence of CDR3 and clonal lineage profiles in IgM than in IgA and IgG, and better robustness of somatic mutation networks in IgM than in IgA and IgG. It also showed that the CDR3 clonotypes and clonal lineages shared better in the spleen samples than in the blood samples. The animal batch differences were detected in CDR3 evenness, mutated clonotype proportions, and maximal network degrees. A cut-off of 95% identity in the CDR3 nucleotide sequences was suitable for clonal lineage establishment. CONCLUSIONS: Our findings reveal a natural landscape of BCR repertoire similarities between baseline mice and provide a solid reference for designing studies of mouse BCR repertoires.


Assuntos
Regiões Determinantes de Complementaridade , Receptores de Antígenos de Linfócitos B , Animais , Regiões Determinantes de Complementaridade/genética , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA