Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 75(3): 1198-208, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25916408

RESUMO

PURPOSE: To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. THEORY AND METHODS: An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. RESULTS: The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. CONCLUSION: A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field.


Assuntos
Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Masculino , Imagens de Fantasmas , Ondas de Rádio
2.
Magn Reson Med ; 76(4): 1158-69, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26510117

RESUMO

PURPOSE: To design array-compressed parallel transmit radiofrequency (RF) pulses and compare them to pulses designed with existing transmit array compression strategies. THEORY AND METHODS: Array-compressed parallel RF pulse design is proposed as the joint optimization of a matrix of complex-valued compression weights that relate a full-channel physical array to a reduced-channel virtual array, along with a set of RF pulses for the virtual array. In this way, the physics of the RF pulse application determine the coil combination weights. Array-compressed pulse design algorithms are described for four parallel transmit applications: accelerated two-dimensional spiral excitation, multislice RF shimming, small-tip-angle kT -points excitation, and slice-selective spokes refocusing. Array-compressed designs are compared in simulations and an experiment to pulses designed using four existing array compression strategies. RESULTS: In all cases, array-compressed pulses achieved the lowest root-mean-square excitation error among the array compression approaches. Low errors were generally achieved without increasing root-mean-square RF amplitudes or maximum local 10-gram specific absorption rate. Leave-one-out multisubject shimming simulations demonstrated that array-compressed RF shimming can identify useful fixed coil combination weights that perform well across a population. CONCLUSION: Array-compressed pulse design jointly identifies the transmit coil array compression weights and RF pulses that perform best for a specific parallel excitation application. Magn Reson Med 76:1158-1169, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Compressão de Dados/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA