Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Magn Reson Med ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054786

RESUMO

PURPOSE: T 2 $$ {}_2 $$ -weighted turbo-spin-echo (TSE) sequences are a fundamental technique in brain imaging but suffer from field inhomogeneities at ultra-high fields. Several methods have been proposed to mitigate the problem, but were limited so far to nonselective three-dimensional (3D) measurements, making short acquisitions difficult to achieve when targeting very high resolution images, or needed additional calibration procedures, thus complicating their application. METHODS: Slab-selective excitation pulses were designed for flexible placement utilizing the concept of k T $$ {}_T $$ -spokes. Phase-coherent refocusing universal pulses were subsequently optimized with the Gradient Ascent Pulse Engineering algorithm and tested in vivo for improved signal homogeneity. RESULTS: Implemented within a 3D variable flip angle TSE sequence, these pulses led to a signal-to-noise ratio (SNR) improvement ranging from 10% to 30% compared to a two-dimensional (2D) T2w TSE sequence employing B 1 + $$ {\mathrm{B}}_1^{+} $$ -shimmed pulses. B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities could be mitigated and artifacts from B 0 $$ {\mathrm{B}}_0 $$ deviations reduced. The concept of universal pulses was successfully applied. CONCLUSION: We present a pulse design method which provides a set of calibration-free universal pulses (UPs) for slab-selective excitation and phase-coherent refocusing in slab-selective TSE sequences.

2.
Neuroimage ; 240: 118384, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265419

RESUMO

Ultra-High Field (UHF) MRI provides a significant increase in Signal-to-Noise Ratio (SNR) and gains in contrast weighting in several functional and structural acquisitions. Unfortunately, an increase in field strength also induces non-uniformities in the transmit field (B1+) that can compromise image contrast non-uniformly. The MPRAGE is one of the most common T1 weighted (T1w) image acquisitions for structural imaging. It provides excellent contrast between gray and white matter and is widely used for brain segmentation. At 7T, the signal non-uniformities tend to complicate this and therefore, the self-bias-field corrected MP2RAGE is often used there. In both MPRAGE and MP2RAGE, more homogeneous image contrast can be achieved with adiabatic pulses, like the TR-FOCI inversion pulse, or special pulse design on parallel transmission systems, like Universal Pulses (UP). In the present study, we investigate different strategies to improve the bias-field for MPRAGE at 7T, comparing the contrast and GM/WM segmentability against MP2RAGE. The higher temporal efficiency of MPRAGE combined with the potential of the user-friendly UPs was the primary motivation for this MPRAGE-MP2RAGE comparison. We acquired MPRAGE data in six volunteers, adding a k-space shutter to reduce scan time, a kt-point UP approach for homogeneous signal excitation, and a TR-FOCI pulse for homogeneous inversion. Our results show remarkable signal contrast improvement throughout the brain, including regions of low B1+ such as the cerebellum. The improvements in the MPRAGE were largest following the introduction of the UPs. In addition to the CNR, both SNR and GM/WM segmentability were also assessed. Among the MPRAGEs, the combined strategy (UP + TR-FOCI) yielded highest SNR and showed highest spatial similarity between GM segments to the MP2RAGE. Interestingly, the distance between gray and white matter peaks in the intensity histograms did not increase, as better pulses and higher SNR especially benefitted the (cerebellar) gray matter. Overall, the gray-white matter contrast from MP2RAGE is higher, with higher CNR and higher intensity peak distances, even when scaled to scan time. Hence, the extra acquisition time for MP2RAGE is justified by the improved segmentability.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adulto , Interpretação Estatística de Dados , Feminino , Substância Cinzenta/fisiologia , Humanos , Masculino , Substância Branca/fisiologia
3.
Magn Reson Med ; 85(6): 3140-3153, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400302

RESUMO

PURPOSE: To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS: Data sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS: All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION: UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Algoritmos , Lesões Encefálicas/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Adulto Jovem
4.
NMR Biomed ; 34(3): e4450, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325581

RESUMO

Three-dimensional (3D) human heart imaging at ultra-high fields is highly challenging due to respiratory and cardiac motion-induced artifacts as well as spatially heterogeneous B1+ profiles. In this study, we investigate the feasibility of applying 3D flip angle (FA) homogenization targeting the whole heart via static phase-only and dynamic kT-point in vivo parallel transmission at 7 T. 3D B1+ maps of the thorax were acquired under free breathing in eight subjects to compute parallel transmission pulses that improve excitation homogeneity in the human heart. To analyze the number of kT-points required, excitation homogeneity and radiofrequency (RF) power were compared using different regions of interest in six subjects with different body mass index (BMI) values of 20-34 kg/m2 for a wide range of regularization parameters. One subset of the optimized subject-specific pulses was applied in vivo on a 7 T scanner for six subjects in Cartesian 3D breath-hold scans as well as in two subjects in a radial phase-encoded 3D free-breathing scan. Across all subjects, 3-4 kT-points achieved a good tradeoff between RF power and nominal FA homogeneity. For subjects with a BMI in the normal range, the 4 kT-point pulses reliably improved the coefficient of variation by less than 10% compared with less than 25% achieved by static phase-only parallel transmission. in vivo measurements on a 7 T scanner validated the B1+ estimations and the pulse design, despite neglecting ΔB0 in the optimizations and Bloch simulations. This study demonstrates in vivo that kT-point pTx pulses are highly suitable for mitigating nominal FA heterogeneities across the entire 3D heart volume at 7 T. Furthermore, 3-4 kT-points demonstrate a practical tradeoff between nominal FA heterogeneity mitigation and RF power.


Assuntos
Coração/diagnóstico por imagem , Imageamento Tridimensional , Adulto , Anisotropia , Simulação por Computador , Feminino , Humanos , Masculino , Ondas de Rádio , Adulto Jovem
5.
Magn Reson Med ; 81(5): 3202-3208, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30652352

RESUMO

PURPOSE: The fluid attenuated inversion recovery sequence is a pillar technique to detect brain lesions in MRI. At ultrahigh field, the lengthening of T1 often advocates a T2 -weighting preparation module to regain signal and contrast between tissues, which can be affected by transmit RF field inhomogeneity. In this note, we report an extension of a previous fluid attenuated inversion recovery study that now incorporates the T2 preparation with parallel transmission calibration-free universal pulses to mitigate the problem. METHODS: The preparation consisted of a 90°-τ-180° -τ-90° module to implement an effective inversion in the CSF and a saturation in the brain tissues. Care was taken for the pulses to have the desired phase relationship in every voxel by appropriate pulse design. The RF pulse design made use of the kT -point parametrization and was based on a database of 20 B1+ and ΔB0 maps previously acquired on different subjects at 7 T. Simulations and experiments on 5 volunteers, not contained in the database, were performed for validation. RESULTS: Simulations reported very good inversion efficiency for the preparation module with 8% variation, with respectively 4 and 6 times less power and specific absorption rate than for the adiabatic version. Experiments revealed fluid attenuated inversion recovery images free of B1+ artifacts. CONCLUSION: This work contributes further to the panel of 3D sequences validated and now available with universal pulses at 7 T. The drop in power and specific absorption rate demand compared with adiabatic pulses in the T2 preparation leads to more freedom for the design of the readout train.


Assuntos
Encefalopatias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Algoritmos , Artefatos , Calibragem , Líquido Cefalorraquidiano , Simulação por Computador , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Esclerose Múltipla/líquido cefalorraquidiano , Imagens de Fantasmas , Razão Sinal-Ruído
6.
Magn Reson Med ; 82(6): 2016-2031, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31257612

RESUMO

PURPOSE: A calibration-free pulse design method is introduced to alleviate B1+ artifacts in clinical routine with parallel transmission at high field, dealing with significant inter-subject variability, found for instance in the abdomen. THEORY AND METHODS: From a dual-transmit 3T scanner, a database of B1+ and off-resonance abdominal maps from 50 subjects was first divided into 3 clusters based on mutual affinity between their respective tailored kT -points pulses. For each cluster, a kT -points pulse was computed, minimizing normalized root-mean-square flip angle deviations simultaneously for all subjects comprised in it. Using 30 additional subjects' field distributions, a machine learning classifier was trained on this 80-labeled-subject database to recognize the best pulse from the 3 ones available, relying only on patient features accessible from the preliminary localizer sequence present in all protocols. This so-called SmartPulse process was experimentally tested on an additional 53-subject set and compared with other pulse types: vendor's hard calibration-free dual excitation, tailored static radiofrequency shimming, universal and tailored kT -points pulses. RESULTS: SmartPulse outperformed both calibration-free approaches. Tailored static radiofrequency shimming yielded similar flip angle homogeneity for most patients but broke down for some while SmartPulse remained robust. Although flip angle homogeneity was systematically better with tailored kT -points, the difference was barely noticeable on in vivo images. CONCLUSION: The proposed method paves the way toward an efficient trade-off between tailored and universal pulse design approaches for large inter-subject variability. With no need for on-line field mapping or pulse design, it can fit seamlessly into a clinical protocol.


Assuntos
Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Ondas de Rádio , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Artefatos , Índice de Massa Corporal , Calibragem , Análise por Conglomerados , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
7.
Magn Reson Med ; 80(1): 53-65, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29193250

RESUMO

PURPOSE: T2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. METHOD: Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. RESULTS: The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). CONCLUSION: This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Adulto , Algoritmos , Aorta/patologia , Mapeamento Encefálico/métodos , Calibragem , Simulação por Computador , Meios de Contraste , Bases de Dados Factuais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Adulto Jovem
8.
J Magn Reson Imaging ; 47(6): 1562-1571, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29159855

RESUMO

BACKGROUND: The excitation inhomogeneity artifact occurring at 3T in the abdomen can lead to dramatic loss of signal and contrast, thereby hampering diagnosis. PURPOSE: To assess excitation homogeneity and image quality achieved by nonselective prototypical kT -points pulses, compared to tailored static RF shimming, in clinical routine on a commercial dual-transmit scanner. STUDY TYPE: Retrospective study with Institutional Review Board approval; informed consent was waived. POPULATION: Fifty consecutive patients referred for liver MRI at a single hospital. FIELD STRENGTH/SEQUENCE: 3D breath-hold dynamic contrast-enhanced (DCE) MRI at 3T. ASSESSMENT: Flip angle homogeneity was estimated via numerical simulation based on measured static and RF field maps. In all, 20 of the 50 patients underwent DCE-MRI while a pulse designer was present. The effect of RF shimming and kT -point pulses could be compared by repeating the acquisition with each transmit scheme before injection and in the late phase. Signal homogeneity, T1 contrast, enhancement quality, structure details, and global image quality were assessed on a 4-level scale (0 to 3) by two radiologists. STATISTICAL TESTS: Means were compared using Wilcoxon signed-rank tests. RESULTS: Normalized root mean square flip angle error was significantly reduced with kT -points compared to static RF shimming (8.5% ± 1.5% [mean ± standard deviation, SD] vs. 20.4% ± 9.8%; P < 0.0001). The worst case (heavy ascites) led to 13.0% (kT -points) vs. 54.9% (RF shimming). Global image quality was significantly higher for kT -points (2.3 ± 0.5 vs. 1.9 ± 0.6; P = 0.008). One subject's examination was judged unusable with RF shimming by one reader, none with kT -points. 85% of kT -points acquisitions were graded at least 2/3, and only 55% for static RF shimming. DATA CONCLUSION: KT -points reduce excitation inhomogeneity quantitatively and qualitatively, especially in patients with ascites and prone to B1 shading. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1562-1571.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Radiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Ascite/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Pâncreas/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos , Processamento de Sinais Assistido por Computador , Adulto Jovem
9.
Magn Reson Med ; 75(3): 1198-208, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25916408

RESUMO

PURPOSE: To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. THEORY AND METHODS: An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. RESULTS: The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. CONCLUSION: A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field.


Assuntos
Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Masculino , Imagens de Fantasmas , Ondas de Rádio
10.
Magn Reson Med ; 76(5): 1431-1442, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26599411

RESUMO

PURPOSE: Standard radiofrequency pulse design strategies focus on minimizing the deviation of the flip angle from a target value, which is sufficient but not necessary for signal homogeneity. An alternative approach, based directly on the signal, here is proposed for the MPRAGE sequence, and is developed in the parallel transmission framework with the use of the kT -points parametrization. METHODS: The flip angle-homogenizing and the proposed methods were investigated numerically under explicit power and specific absorption rate constraints and tested experimentally in vivo on a 7 T parallel transmission system enabling real time local specific absorption rate monitoring. Radiofrequency pulse performance was assessed by a careful analysis of the signal and contrast between white and gray matter. RESULTS: Despite a slight reduction of the flip angle uniformity, an improved signal and contrast homogeneity with a significant reduction of the specific absorption rate was achieved with the proposed metric in comparison with standard pulse designs. CONCLUSION: The proposed joint optimization of the inversion and excitation pulses enables significant reduction of the specific absorption rate in the MPRAGE sequence while preserving image quality. The work reported thus unveils a possible direction to increase the potential of ultra-high field MRI and parallel transmission. Magn Reson Med 76:1431-1442, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Humanos , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Magn Reson Med ; 76(4): 1158-69, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26510117

RESUMO

PURPOSE: To design array-compressed parallel transmit radiofrequency (RF) pulses and compare them to pulses designed with existing transmit array compression strategies. THEORY AND METHODS: Array-compressed parallel RF pulse design is proposed as the joint optimization of a matrix of complex-valued compression weights that relate a full-channel physical array to a reduced-channel virtual array, along with a set of RF pulses for the virtual array. In this way, the physics of the RF pulse application determine the coil combination weights. Array-compressed pulse design algorithms are described for four parallel transmit applications: accelerated two-dimensional spiral excitation, multislice RF shimming, small-tip-angle kT -points excitation, and slice-selective spokes refocusing. Array-compressed designs are compared in simulations and an experiment to pulses designed using four existing array compression strategies. RESULTS: In all cases, array-compressed pulses achieved the lowest root-mean-square excitation error among the array compression approaches. Low errors were generally achieved without increasing root-mean-square RF amplitudes or maximum local 10-gram specific absorption rate. Leave-one-out multisubject shimming simulations demonstrated that array-compressed RF shimming can identify useful fixed coil combination weights that perform well across a population. CONCLUSION: Array-compressed pulse design jointly identifies the transmit coil array compression weights and RF pulses that perform best for a specific parallel excitation application. Magn Reson Med 76:1158-1169, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Compressão de Dados/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
MAGMA ; 29(3): 347-58, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059983

RESUMO

OBJECTIVES: For turbo spin echo (TSE) sequences to be useful at ultra-high field, they should ideally employ an RF pulse train compensated for the B 1 (+) inhomogeneity. Previously, it was shown that a single kT-point pulse designed in the small tip-angle regime can replace all the pulses of the sequence (static kT-points). This work demonstrates that the B 1 (+) dependence of T 2-weighted imaging can be further mitigated by designing a specific kT-point pulse for each pulse of a 3D TSE sequence (dynamic kT-points) even on single-channel transmit systems MATERIALS AND METHODS: By combining the spatially resolved extended phase graph formalism (which calculates the echo signals throughout the sequence) with a gradient descent algorithm, dynamic kT-points were optimized such that the difference between the simulated signal and a target was minimized at each echo. Dynamic kT-points were inserted into the TSE sequence to acquire in vivo images at 7T. RESULTS: The improvement provided by the dynamic kT-points over the static kT-point design and conventional hard pulses was demonstrated via simulations. Images acquired with dynamic kT-points showed systematic improvement of signal and contrast at 7T over regular TSE-especially in cerebellar and temporal lobe regions without the need of parallel transmission. CONCLUSION: Designing dynamic kT-points for a 3D TSE sequence allows the acquisition of T 2-weighted brain images on a single-transmit system at ultra-high field with reduced dropout and only mild residual effects due to the B 1 (+) inhomogeneity.


Assuntos
Mapeamento Encefálico/métodos , Cabeça/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Campos Magnéticos , Modelos Estatísticos
13.
Magn Reson Med ; 71(4): 1478-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23788025

RESUMO

PURPOSE: At high magnetic field strengths (B(0) ≥ 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T(2) -weighted imaging that requires multiple radiofrequency pulses. To obtain T(2) -weighted images with uniform contrast throughout the whole brain at 7 T, short (2-3 ms) 3D tailored radiofrequency pulses (kT -points) were integrated into a 3D variable flip angle turbo spin echo sequence. METHODS: The excitation and refocusing "hard" pulses of a variable flip angle turbo spin echo sequence were replaced with kT -point pulses. Spatially resolved extended phase graph simulations and in vivo acquisitions at 7 T, utilizing both single channel and parallel-transmit systems, were used to test different kT -point configurations. RESULTS: Simulations indicated that an extended optimized k-space trajectory ensured a more homogeneous signal throughout images. In vivo experiments showed that high quality T(2) -weighted brain images with uniform signal and contrast were obtained at 7 T by using the proposed methodology. CONCLUSION: This work demonstrates that T(2) -weighted images devoid of artifacts resulting from B(1)(+) inhomogeneity can be obtained at high field through the optimization of extended kT -point pulses.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Magn Reson ; 326: 106941, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721585

RESUMO

We consider an excitation pulse with piecewise constant gradient trajectories and radio frequency (RF) waveforms such that the solution of the Bloch equations without relaxation terms can be represented by rotations. Based on this analytic solution we formulate a non-linear program for finding sub-pulse durations, gradient strengths, and complex RF voltages which minimize the deviation between the achieved and desired magnetization. We develop explicit expressions for the first and second order derivatives of the objective function. We extend the non-linear program to precisely account for gradient slew rate constraints. Using an interior point solver we apply the developed theory to simultaneously optimize the positions of kT-points, their associated RF voltages and durations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA